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Executive Summary

This deliverable will introduce the contribution of CERTH in Task 5.4 “Transport service optimisation”
of the AVENUE project. The AVENUE service platform would require an intelligence able to run
optimisations to send vehicles to the right place at the right time in order to answer to the user’s
demand. The main objective of this task is to work on the following aspects assisting mobility
providers:

1. Planning & scheduling of vehicles in the network based on forecasted demands and energy
constraints.

2. Real-time automated dispatching of missions to vehicles servicing the network when
demands arise.

3. Intelligent routing of vehicles taking into consideration current and forecasted traffic as well
as weather.

4. Pooling (also known as ride-sharing) to combine similar requests into one, maximizing the
capacity of the service while still guaranteeing excellent transit times to travelers.

5. Automatic electrical energy management by evenly spreading the usage of the fleet and
sending to charging stations vehicles when needed.

6. Health monitoring, defect and maintenance management using state-of-the-art machine
learning techniques to predict and anticipate issues by scheduling maintenance. The overall
reliability of the system is improved by ensuring the availability of the right number of
vehicles.

The target is to optimise the use of autonomous vehicles, augment the service quality, and reduce
the operation costs.

CERTH’s contribution refers to a theoretical study and algorithms’ development for traffic flow
prediction and predictive maintenance tasks, crucial to achieving the aforementioned goals. By
having a better view of road congestion and AV’s battery life state the overall AV’s transport service
is optimised.

The results of this deliverable will be used by the Fleet Orchestrators to modify their
algorithms and improve the routing optimization.
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1 Introduction

AVENUE aims to design and carry out full-scale demonstrations of urban transport automation by
deploying, for the first time worldwide, fleets of Automated minibuses in low to medium demand areas
of 4 European demonstrator cities (Geneva, Lyon, Copenhagen, and Luxembourg) and 2 to 3 replicator
cities. The AVENUE vision for future public transport in urban and suburban areas, is that Automated
vehicles will ensure safe, rapid, economic, sustainable, and personalised transport of passengers.
AVENUE introduces disruptive public transportation paradigms based on demand, door-to-door services,
aiming to set up a new model of public transportation, by revisiting the offered public transportation
services, and aiming to suppress prescheduled fixed bus itineraries.

Vehicle services that substantially enhance the passenger experience as well as the overall quality and
value of the service will be introduced, also targeting elderly people, people with disabilities and
vulnerable users. Road behaviour, security of the Automated vehicles and passengers’ safety are central
points of the AVENUE project.

At the end of the AVENUE project four-year period the mission is to have demonstrated that Automated
vehicles will become the future solution for public transport. The AVENUE project will demonstrate the
economic, environmental, and social potential of Automated vehicles for both companies and public
commuters while assessing the vehicle road behaviour safety.

1.1 On-demand Mobility

Public transportation is a key element of a region's economic development and the quality of life of its
citizens.

Governments around the world are defining strategies for the development of efficient public transport
based on different criteria of importance to their regions, such as topography, citizens' needs, social and
economic barriers, environmental concerns, and historical development. However, new technologies,
modes of transport and services are appearing, which seem very promising to the support of regional
strategies for the development of public transport.

On-demand transport is a public transport service that only works when a reservation has been
recorded and will be a relevant solution where the demand for transport is diffuse and regular transport
is inefficient.

On-demand transport differs from other public transport services in that vehicles do not follow a fixed
route and do not use a predefined timetable. Unlike taxis, on-demand public transport is usually also not
individual. An operator or an automated system takes care of the booking, planning and organization.

It is recognized that the use and integration of on-demand Automated vehicles has the potential to
significantly improve services and provide solutions to many of the problems encountered today in the
development of sustainable and efficient public transport.

1.2 Fully Automated Vehicles

A self-driving car, referred in the AVENUE project as a Fully Automated Vehicle (AV), or as Autonomous
Vehicle, is a vehicle that can sense its environment and moving safely with no human input.

The terms automated vehicles and autonomous vehicles are often used together. The Regulation
2019/2144 of the European Parliament and of the Council of 27 November 2019 on type-approval

* Xk 1
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requirements for motor vehicles defines "automated vehicle" and "fully automated vehicle" based on
their autonomous capacity:

An "automated vehicle" means a motor vehicle designed and constructed to move autonomously for
certain periods of time without continuous driver supervision but in respect of which driver intervention
is still expected or required.

"Fully automated vehicle" means a motor vehicle that has been designed and constructed to move
autonomously without any driver supervision.

In AVENUE we operate Fully Automated minibuses for public transport, (previously referred as
Autonomous shuttles, or Autonomous buses), and we refer to them as simply Automated minibuses or
the AVENUE minibuses.

In relation to the SAE levels, the AVENUE project will operate SAE Level 4 vehicles.

%w SAE J3016™LEVELS OF DRIVING AUTOMATION

SE SE SE SE SE
LEVELO 3 LEVEL1 J LEVEL 2 LEVEL 4 3 LEVELS

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
What does the you are not steering “the driver’s seat”

human in the
driver's seat

have to do? You must constantly supervise these support features; When the feature These automated driving features

you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving
These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
What do these to providing steering steering not operate pnless all required vehicle pf)der
features do? warnings and OR brakg/ AND brake/ conditions are met all conditions
: momentary acceleration acceleration
assistance support to support to
the driver the driver
*automatic +*1ane centering *lane centering «traffic jam slocal driverless @ *same as
emergency OR AND chauffeur taxi level 4,
braking ‘ «pedals/ but feature
Example i +adaptive cruise [l +adaptive cruise pedat can drive
Features | [RRARLId control control at the steering everywhere

vheel may or
may not be
installed

warning

+lane departure
warning

same time

inall
conditions

Table 1: SAE Driving Automation levels (©2020 SAE International)

1.2.1 Automated vehicle operation overview

We distinguish in AVENUE two levels of control of the AV: micro-navigation and macro-navigation. Micro
navigation is fully integrated in the vehicle and implements the road behaviour of the vehicle, while
macro-navigation is controlled by the operator running the vehicle and defines the destination and path
of the vehicle, as defined the higher view of the overall fleet management.

For micro-navigation Automated Vehicles combine a variety of sensors to perceive their surroundings,
such as 3D video, LIDAR, sonar, GNSS, odometry and other types of sensors. Control software and
systems, integrated in the vehicle, fusion and interpret the sensor information to identify the current
position of the vehicle, detecting obstacles in the surround environment, and choosing the most
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appropriate reaction of the vehicle, ranging from stopping to bypassing the obstacle, reducing its speed,
making a turn etc.

For the Macro-navigation, that is the destination to reach, the Automated Vehicle receives the
information from either the in-vehicle operator (in the current configuration with a fixed path route), or
from the remote-control service via a dedicated 4/5G communication channel, for a fleet-managed
operation. The fleet management system considers all available vehicles in the services area, the
passenger request, the operator policies, the street conditions (closed streets) and send route and stop
information to the vehicle (route to follow and destination to reach).

1.2.2 Automated vehicle capabilities in AVENUE

The Automated vehicles employed in AVENUE fully and automatically manage the above defined, micro-
navigation and road behaviour, in an open street environment. The vehicles are automatically capable to
recognise obstacles (and identify some of them), identify moving and stationary objects, and
automatically decide to bypass or wait behind them, based on the defined policies. For example, with
small changes in its route the AVENUE minibus is able to bypass a parked car, while it will slow down and
follow behind a slowly moving car. The AVENUE mini-buses are able to handle different complex road
situations, like entering and exiting round-about in the presence of other fast running cars, stop in zebra
crossings, communicate with infrastructure via V2l interfaces (ex. red light control).

The minibuses used in the AVENUE project technically can achieve speeds of more than 60Km/h.
However, this speed cannot be used in the project demonstrators for several reasons, ranging from
regulatory to safety. Under current regulations the maximum authorised speed is 25 or 30 Km/h
(depending on the site). In the current demonstrators the speed does not exceed 23 Km/h, with an
operational speed of 14 to 18 Km/h. Another, more important reason for limiting the vehicle speed is
safety for passengers and pedestrians. Due to the fact that the current LIDAR has a range of 100m and
the obstacle identification is done for objects no further than 40 meters, and considering that the
vehicle must safely stop in case of an obstacle on the road (which will be “seen” at less than 40 meters
distance) we cannot guarantee a safe braking if the speed is more than 25 Km/h. Note that technically
the vehicle can make harsh break and stop with 40 meters in high speeds (40 -50 Km/h) but then the
break would too harsh putting in risk the vehicle passengers. The project is working in finding an optimal
point between passenger and pedestrian safety.

Due to legal requirements a Safety Operator must always be present in the vehicle, able to take control
any moment. Additionally, at the control room, a Supervisor is present controlling the fleet operations.
An Intervention Team is present in the deployment area ready to intervene in case of incident to any of
the minibuses. Table 2 provides an overview of the AVENEU sites and ODDs.
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Summary of AVENUE operating sites demonstrators

TPG Holo Keolis Sales-Lentz
Geneva Copenhagen Oslo Lyon Luxembourg
Site Meyrin Belle-ldée Nordhavn Ormgya ParcOL Pfaffental Contern Esch sur Alzette
Funding TPG EU + TPG EU + Holo EU + Holo EU + Keolis EU + SLA EU + SLA EU + SLA
Start date of project August 2017 May 2018 May 2017 August 2019 May 2017 June 2018 June 2018 February 2022
Start date of trial July 2018 June 2020 September 2020 December 2019 November 2019 September 2018 September 2018 April 2022
Type of route | Fixed circular line Area Fixed circular line Fixed circular line Fixed circular line Fixed circular line Fixed circular line Fixed circular line

Level of on-demand

Fixed route / Fixed

Flexible route / On-

Fixed route / Fixed

Fixed route / Fixed

Fixed route/Fixed

Fixed route / Fixed

Fixed route / Fixed

Fixed route / Fixed

service* stops demand stops stops stops stops stops stops stops
Route length 2,1 km 38 hectares 1,3km 1,6 km 1,3 km 1,2 km 2,3 km 1km
Road environment Open road Semi-private Open road Open road Open road Public road Public road Main pedestrian road
Type of traffic Mixed Mixed Mixed Mixed Mixed Mixed Mixed Pededstr_lans, bicycles,
elivery cars
Speed limit 30 km/h 30 km/h 30 km/h 30 km/h 8 to 10 km/h 30 km/h 50 km/h 20 km/h
Roundabouts Yes Yes No No Yes No No No
Traffic lights No No No No Yes Yes Yes No
Type of service Fixed line On demand Fixed line Fixed line Fixed line Fixed line Fixed line On Demand
Concession Line (circular) Area Line (circular) Line (circular) Line (circular) Line (circular) Line (circular) Line (circular)
Number of stops 4 > 35 6 6 2 4 2 3
Type of bus stop Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed
Bus stop infrastructure Yes Sometimes, mostly not Yes Yes Yes Yes Yes Yes
Number of vehicles 1 3-4 1 2 2 2 1 1
Timetable Fixed On demand Fixed Fixed Fixed Fixed Fixed On-demand
Operation hours Mondaéy—Friday 5 Sunday(;Saturday 7 Mondz;y—Friday Mondaé/—Sunday 7 Monda)zj—Saturday Tslﬁjg;;’y:&;]hnudfzsag Monday - Friday Monday — Saturday
B By (5 days) ays) Beayg) every public holiday
. 06:30 — 08:30/ 7:00 — 9:00 11:00 — 18:00
Timeframe weekdays 16:00 — 18:15 07:00 — 19:00 10:00 — 18:00 7:30 — 21:30 08:30 — 19:30 12:00 — 20h00 16-00 — 19:00 11:00 — 18:00
Timeframe weekends No service 07:00 — 19:00 No service 9:00 — 18:00 08:30 — 19:30 10:00 — 21:00 No Service On Suterday only
Depot 43?5{2(:225 On site 800 meters distance | 200 meters distance On site On site On site 500 m distance
Driverless service No 2021 No No No No No No
Drive area type/ODD . . B-Roads/minor )
B-Roads Minor roads/parking roads B-Roads B-Roads B-Roads B-Roads/parking
Drive area geo/ODD ' Straight ' _ ' _ Straight Lines/ _ ) _ ) Straight lines / plane
lines/plane Straight lines/ plane Straight lines/ plane Curves/slopes plane Straight lines/ plane Straight lines/ plane
Lane specification/ODD Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Open area
Drive area signs/ODD Regulatory Regulatory Regulatory, Warning Regulatory Regulatory Regulatory Regulatory Regulatory
Standard surface, Standard surface, Standard surface Frequent Ice, Snow Standard surface, Standard surface Standard surface Standard Surrface
Drive area surface/ODD Speedbumps Speedbumps Speedbumps, Potholes
Roadworks

Table 2: Summary of AVENUE operating site (+ODD components)




1.3 Preamble

Task 5.4 focuses on "Transport service optimisation." Its primary goal is to enhance autonomous vehicle
(AV) service by addressing several key aspects: vehicle planning and scheduling based on forecasted
demands and energy limits, real-time dispatching, intelligent routing considering traffic and weather
forecasts, ride-sharing for efficient service, automated energy management, and predictive maintenance
using advanced machine learning. These efforts aim to maximize AV efficiency, enhance service quality,
and cut operational costs. CERTH's role includes theoretical studies and algorithm development for
traffic flow prediction and predictive maintenance. The findings will guide Fleet Orchestrators in refining

routing algorithms.
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2 Traffic Flow prediction

In the last few years, the utilisation of autonomous vehicles (AVs) has been significantly increased over
the globe. AVs have the potential to improve the quality and productivity of the time spent in cars,
increase the safety and efficiency of the transportation system and transform transportation into a
utility available to anyone, anytime. Traffic flow prediction is an important component of the
autonomous driving system and is used to handle traffic congestion problem. It can assist to decide their
itinerary and take adaptive decisions such as turn left or right, move straight, lane change, stop or
accelerate with respect to their surrounding objects. In recent years, new models and frameworks for
predicting traffic flow have been rapidly developed to enhance the performance of traffic flow
prediction, alongside the implementation of Artificial Intelligence (Al) methods such as machine learning
and deep learning.

In the next sections, state of the art approaches in traffic flow prediction tasks are presented. The
problem formulation, the dataset analysis and the methodology used for the purpose of this task is also
described in detail. The performance of the developed algorithms is estimated and compared in terms of
various statistical metrics.

2.1 Literature Review

Traffic flow prediction has a pivotal role to play in Intelligent Transport Systems (ITS) and as a result has
attracted much attention from the research community over the last few decades. Due to the increasing
amount of vehicles and the development of the autonomous vehicles operations, apart from the
problem of short-term traffic prediction that researchers have been struggling with, the need for long—
term traffic forecasting has made its appearance and grows rapidly. In light of this, parameters such as
accuracy, efficiency and robustness are essential problems for many ITS applications and as a result
several modelling efforts have been made in the literature in order to solve them, since 1970s. Based on
the forecasting horizon, traffic forecasting can be categorised as short-term forecasting and long-term
forecasting. The first category refers to a forecast horizon about less or equal than an hour while the
latter to more than one hour.

Concerning the short-time traffic flow prediction, a wide variety of techniques has been applied,
depending upon the type of data that are available and the potential end use of the forecast. According
to [1], the approaches used in short-term traffic forecast can be broadly classified into four categories:
Naive, parametric, non-parametric, and hybrid. The first category refers to models that provide simple
estimate of traffic in the future, e.g., historic averages. The parametric approaches refer to the models
that capture all its information about the data within its parameters. In other words, the prediction of a
future data value from the current state of the model depends only on its parameters. On the other
hand, a non-parametric model can capture more subtle aspects of the data. It allows more information
to pass from the current set of data that is attached to the model at the current state, so to be able to
predict any future data. The parameters are usually said to be infinite in dimensions and so can express
the characteristics in the data much better than parametric models. As a result, this allows the model to
have more degrees of freedom, be more flexible and in cases of multivariate settings, simpler [2]. Lastly,
other short-term traffic models have implemented a hybrid of the above-mentioned approaches. In [1]
numerous short traffic prediction models and states were applied and it was proved that there is no
“best technique”. Thus, research work in recent years has focused on combining different state of the
art techniques (parametric and non-parametric) [3] [4]. Research has shown that the prediction accuracy
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of nonparametric methods and hybrid methods is superior to parametric methods. Admittedly, the
traffic flow prediction problem is challenging mainly due to the complex spatial and temporal
dependencies [5]. While the traffic time series demonstrate strong temporal dynamics (accidents, rush
hours, weekdays and weekends traffic differences), at the same time sensors on the road contains
spatial correlations. To sum up, another division to the traffic prediction techniques that has been made
is based on whether they model the spatial correlation among different traffic time series or not [6].

Traffic Forecasting without Modeling Spatial Dependency

In more detail, the parametric models that have been proposed for traffic flow prediction are based on

time series analysis. A time series is described as the set of observed data x, each one being recorded at
a specific time t [7]. The goal is to determine a trend from the observed traffic flow data in order to
predict future values. Most of them are based on the classic Box and Jenkins Auto-Regressive Integrated
Moving Average (ARIMA) model and have seen a satisfactorily successful application to traffic
prediction. ARIMA consists of three parts: The autoregression (AR) part which correspond to the
dependent relationship between an observation and some number of historical observations, the
Moving Average (MA) part which is used to model the dependency between an observation and residual
errors from a moving average model applied to historical observations and Intergraded (l) part, which is
used in order to make the time series stationary, using differencing of raw observations. Mohammed,
first used ARIMA model to predict short-term freeway traffic flow in 1979. At the same year, Ahmed
used ARIMA model to predict short-term traffic [8]. It has been shown that the proposed model ARIMA
(0, 1, 3) produce more accurate results contrary to moving average and double-exponential smoothing
methods in terms of MAE and MSE. Other time-series models include techniques such as nonlinear
regression, averaging algorithm, seasonal ARIMA (SARIMA). Especially, in [9], the application of seasonal
time series models to traffic flow forecasting is addressed for the first time, and SARIMA and Winters
exponential smoothing models were developed and demonstrate the necessity of usage of seasonal
time series. Another popular time series forecasting model is exponential smoothing [10] [11], which in
recent years has been used mostly in combination with other techniques so as for the results to be even
more accurate.

Another parametric technique, which still remains very popular among time-series models, is Kalman
filtering (KF). Okutani and Stephanedes introduced KF theory into this field and the derived results
indicated improved performances [3]. In addition, the KF has been studied by many authors considering
a first order traffic model, as in [12], and in [7], in order to solve the problem of significant data
requirements in time-series models, especially in cases that the sufficient flow data is unavailable. They
are generally applied both to the stationary and the non-stationary stochastic environment and its major
advantage is that it allows the selected state variable to be updated continuously. In other words, KF
updates the prediction of state variables based on the observation in the previous step. As a result, it is
only needed the storage of the previous estimated information, which makes the algorithm more
computationally efficient than utilising all the previous estimated data in each step of the prediction
process [13]. Moreover, it can export useful information from data observations that could be noisy or
inaccurate. Hence, they estimate a process by estimating the process state at a given time and then
obtaining feedback in the form of noisy measurements. Based on the KF theory, there have also been
some modifications [14] and hybrid models [15]. Unfortunately, despite the frequently good traffic
prediction accuracy KF method yields, traffic conditions are mostly unstable and this can lead to
generate over-prediction or under-prediction results.
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On contrary, Historical Average (HA) models address the traffic flow as a seasonal process and use the
weighted average of previous seasons as the prediction. For instance, let the season be 1 week, then the
prediction for this Monday is the averaged traffic speeds from the last six Mondays. As the historical
average method does not depend on short-term data, its performance is invariant to the small increases
in the forecasting horizon. Thus, its ability to respond to unanticipated events and incidents is low.
Despite that, it is easy for implementation and it is a fast working model.

As already discussed, these models usually rely on the stationarity assumption and require high quality
of data set so as for them to be accurate and fail to capture non-linear temporal dynamics of traffic flow
[16]. Generally, parametric techniques are useful when the pattern of the observed data has a regular
variation, which in this case is either sparse or even impossible as the traffic data is usually stochastic
and unstable. Subsequently, due to the fact that the traffic flow is uncertain, nonlinear and complex, it is
difficult to predict the traffic flow effectively and accurately by the prediction method based on
traditional mathematics and physics models [10]. Nevertheless, some of these models still remain
popular. Compared to this, non-parametric algorithms consist of flexible number of parameters while
the data are not assumed to follow any particular distribution. Therefore, it turns out that these models
appear to be more suitable to illustrate traffic information. As for the accuracy, due to the learning
ability and strong generalisation, nonparametric techniques are able to archive better performance. In
summary, the mainly advantages of non-parametric algorithms include intuitive formulation, totally
data-driven and thus free of assumptions on data distribution, high flexibility and easy extendibility [2].

All these reasons, in combination with the advent and rapid growth of Artificial Intelligence (Al), have led
in the last few years to the statistical traffic prediction methods displacement to the Al approach.
Specifically, a variety of Machine Learning (ML) algorithms have been used since 1990 to model traffic
patterns, such as Neural Networks (NN), K-nearest neighbours’ regression (k-NN) [11], Support Vector
Regression (SVR) [17], Long Short-term Memory networks (LSTM) [18], and Gated Recurrent Units (GRU)
[19].

As a typical nonparametric method, the k-NN model has received considerable attention. Many scholars
have successfully applied the traditional k-NN model to short term traffic prediction and along with SVR,
turns out to be the most common methods used by researchers for traffic flow forecasting. The use of k-
NN method in time series forecasting was suggested for the first time in 1987, by Yakowit [20] and in
1991 Davis and Nihan [21] used the k-NN approach in traffic forecasting, which performed comparably
to, but not better than, the linear time-series approach. Since then, a lot of research has been conducted
regarding k-NN approaches in traffic flow forecasting and in combination with the use of larger data
bases have led to the amelioration of k-NN’s accuracy. In order to forecast short term traffic flows, in
[22], the k-NN nonparametric regression has been applied and indicated that forecasting intervals
calculated by k has an obvious improvement in comparison with NNs performance, in unconventional
road condition forecasting. According to [23], nonparametric regression aims at finding past events that
had input values identical to the current state of the system, namely at the moment that prediction is
performed. The k-NN method is a non-parametric regression method that searches for the k optimal
nearest neighbour and predicts traffic flow at the next time. In other words, it predicts the traffic flow
y(p) for a given x(p), while using series of observation of input and output pairs ([x(t), y(t)], t=1, 2, 3..., n),
that have been collected from historical data. In order for this to succeed, k-NN method sorts the past
input measurements in the training sample from the additional input measurement according to their
distance from the given x(p). The main advantage of the k-NN algorithm is the ability of adding data
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from multiple locations into the examined area. Notably, nonparametric algorithms are theoretically
grounded. As an asymptotically optimal forecaster, when applied to a state space with m members, k-
NN approach will asymptotically be at least comparable to any m;, order parametric model [22].
Motivated by this attractive property, there is a steady stream of refining and extending k-NN in the
literature. Basically, k-NN algorithms are single-step [21] [22] [23] and that leads to two crucial
problems: firstly, for multiple-step forecasting it is noticed that the algorithm generates overlapping
nearest neighbours and secondly, its performance is sometimes sensitive due to noisy neighbours [24].
Another disadvantage of the k-NN algorithm is the inability to perform spatial and temporal
dependencies at the same time.

SVR is another remarkable nonparametric method that has been widely used for traffic flow forecasting.
SVR is an adaptation of the SVM algorithm used for regression problems. The purpose of SVR is to map
given data to a high dimensional feature space followed by performing linear regression with the same
space. Firstly, each item in the dataset is plotted as a point in n-dimensional feature space. Then,
classification is performed by locating hyperplane that divides the given input into classes. In literature,
SVR has been successfully used to predict traffic parameters such as hourly flow and travel time [8] [6].
In particular, in [25] Neto et al. applied a supervised online SVR approach to investigate the accuracy of
traffic flow prediction under both usual as well as unusual traffic conditions. Moreover, in [6], Wu et al.
presented the SVR for travel-time prediction and compared it with other baseline travel-time prediction
methods using real highway traffic data. Another spectacular work was proposed in [17], in which a
novel prediction model was presented, called online learning weighted SVR. In comparison with several
well-known prediction models including artificial neural network models, locally weighted regression,
conventional SVR, and online learning SVR, it has shown superior performance to that of existing
models.

Moreover, Bayesian networks have been proposed as models that could provide information from other
road link in order to help the traffic flow forecasting at the examined link. Bayesian forecasting is a
learning process that sequentially reviews the state of the travel time a priori knowledge based on new
available data. In a few words, it is a directed graphic model for representing conditional dependences
between a set of random variables [26]. As a non-parametric model, it is able to handle non-linear and
non-stationary processes. Nevertheless, due to the difficulty of describing the influence of traffic flows
at all the other links to the traffic flow at the examined one, since there would be too many variables to
be determined in order to access this relationship, in [26], it is assumed the independence of the links
with the examined. As a result, the calculations are simplified and an estimation of the joint probability
distribution among all nodes is now feasible with accurate results, as the network is smaller. [27] used a
scalar-based data model such as time series, and instead of using classical inference, the Bayesian
Method was applied to estimate the parameters of a SARIMA model. The Markov Chain Monte Carlo
Method was used to solve the posterior problem in high dimension. Within this method, it was
calculated the posterior probability distributions of the Bayesian model, where “posterior’” means after
taking into account the relevant evidence related to the particular case under examination. Their study
showed that the Bayesian inference of SARIMA model provides a more rational technique toward short-
term traffic flow prediction compared to the commonly applied classical inference. Thus, forecasts from
the Bayesian approach can better model the traffic behavior in reality with rapid fluctuations and
extreme peaks.
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Among the nonparametric techniques used for traffic flow prediction, the NN approaches have been
commonly used for the problem [28] [29] and is one of the most popular approaches as this technique
has resulted in hundreds of publications. As a matter of fact, mathematical theorems have proved that a
three-layer feed-forward NN, with sigmoidal units in the hidden layer, can approximate a given real-
valued, continuous multi-variate function to any desired degree of accuracy [30] [31]. It was noted that
for traffic prediction purposes, artificial neural networks (ANNs) can be understood as nonlinear
regression models, although they are typically used in this context for clustering, classification, and
feature extraction. ANNs provide functionalities such as self-learning, self-organization and pattern
recognition. They can also perform non-linear approximation between input and output spaces and their
parallel structure makes them capable of implementing on parallel computing. The idea of predicting
traffic flow using ANNs was initially introduced by Hua and Faghri in 1994 [32]. Following that, Smith and
Demetsky designed a NN model which was compared with traditional traffic prediction methods and
indicated that during the peak traffic periods the NN structures succeed better performance than other
traditional ML architectures [36]. At this point, it is noteworthy to mention the research of Ledoux [29]
that proposes a cooperation based neural network traffic flow model, which aims at being integrated
into a real time adaptive urban traffic control system. Firstly, a single ANN was used to model traffic
patterns on a signalised link. Then, the information was exchanged between connected local NN to
model traffic flow at a junction. Unfortunately, using NNs model individually may not acquire good
generalisation capability for traffic flow prediction. For this reason, incorporating other intelligent
methods has widely been investigated for better prediction results. Specifically, in [33] a hybrid NN
model is presented, which uses a fuzzy rule-based system (FRBS) which combines prediction output from
an online KF and NN. The results appear to be really optimistic as hybrid prediction responds better for
increasing non-linear, uncertain and highly fluctuating nature of urban traffic flow. [34] is one of the
many significant works concerning the traffic flow prediction problem, in which, in contrast to some
previous works, a dynamic NN architecture was used. In addition, due to the object-oriented approach,
it was possible to model complex networks with a mixture of learning rules and processing element
interactions. On the other hand, Jiang et al. [35] developed a dynamic wavelet NN model for traffic flow
forecasting for capturing the dynamics of the traffic flow and for pattern recognition with enhanced
feature detection capability.

Although nonparametric models’ regression forecasting seems to give more accurate results in
comparison with parametric techniques, this is mostly observable for the cases where interactions
between travellers and infrastructure are relatively constant. That is because SVR and k-NN models are
founded on chaotic system theory. Chaotic systems are defined by state transitions that are
deterministic and non-linear. As for ANNs, despite their advantages, such as their capability to work with
multi-dimensional data, implementation flexibility, generalisation ability, and strong forecasting power
[36], they have inherent deficiencies as well. For example, determining the architecture of network is a
difficult issue. Also, weight adjustment using gradient descent-based error propagation algorithm often
converges slowly. In that way, another non-parametric approach, deep learning (DL), has been found to
be useful for traffic flow prediction having multidimensional characteristics. DL is a form of machine
learning that can be viewed as a nested hierarchical model which includes traditional neural networks
and compared to other ML techniques, can provide enhanced performance for predicting traffic flow. In
other words, by exploiting the dependencies in the high-dimensional set of variables, the capture of
sharp discontinuities in traffic flow that emerges in large-scale networks becomes possible.

B, 10
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At this point, it is worth mentioning the applicability of recurrent neural networks (RNNs), a type of
neural network with self-connection, which is able to perform nonlinear auto-regression, and its variants
for traffic flow prediction. Due to the dynamic nature of transportation systems, RNNs had been
proposed a dozen years ago to forecast traffic flow conditions [37]. In [38], EIman gives prominence to
the abilities of RNNs’ to learn complex spatiotemporal patterns. Furthermore, it is clearly explained how
the RNN manages to represent these spatiotemporal patterns in a very efficient distributed manner
through its weights. The essence of the current analysis is that the neural network learns to interpret
current inputs in the context of its previous internal states. The State Space Neural Network (SSNN) is
considered as a variant of ElIman NN, and has been applied to predict urban travel time [37] [39] [40].
Different from the Elman NN, the Time-Delay Neural Network (TDNN) feeds back the previous input
values into the current input values, and thus can be considered as a nonlinear multivariate AR model
[41]. In a previous work [42], it was identified that TDNN could achieve a higher travel time prediction
accuracy compared with the SSNN. Nevertheless, traditional RNN fails for traffic prediction not only
because this process requires both temporal-spatial interactions in the network but also due to the
problem of vanishing gradient and exploding gradient. Moreover, traditional RNNs rely on the
predetermined time lags to learn the temporal sequence processing, but it is difficult to find the optimal
time window size in an automatic way [43]. To handle these issues, variants of RNN, such as LSTM and
GRU, are widely used in predicting short-term traffic flow in the network. Depending on RNNs, several
hybrid models were proposed.

LSTMs are designed to handle long-term dependencies. This feature is advantageous for traffic flow
prediction, because of lack of previous knowledge on correspondence between the length of input past
data and prediction results. LSTMs have the capability to acquire features with a long-time span for time
series data. Ma et al highlighted the utility of LSTM NNs in traffic flow prediction methods as recently as
in 2015 [43]. In this work, they indicate that LSTM NN can overcome the issue of back-propagated error
decay through memory blocks, and thus exhibits the superior capability for time series prediction with
long temporal dependency. Additionally, the comparison with different topologies of dynamic neural
networks as well as other prevailing parametric and nonparametric algorithms implies that LSTM NN can
achieve the best prediction performance in terms of both accuracy and stability. Subsequently, at the
same year, LSTM RNN was proposed in order to overcome the issue of static and predefined input data
that the already existed models required [44]. Their model utilizes the three multiplicative units in the
memory block to determine the optimal time lags dynamically and achieve better performance
regarding the accuracy in comparison with other models such as random walk, support vector machine,
single layer feed forward neural network (FFNN) and stacked autoencoder. Despite the extensive variety
of LSTM-based models, GRU models were widely applied in traffic prediction problem, as well. It was Fu
et al. [19] who used GRU models for the first time, in the area of traffic flow prediction and showed that
they achieve better results than LSTM RNN. Another typical example is the work of Li et al. [45], [50], in
which they build a model based on LSTM and their experimental results that indicate the performances
of models with GRU and LSTM are similar, and both of them better than the basic RNN. Alternatively,
Huang, Bohan et al. [46] used the bidirectional RNN (BRNN) traffic prediction model to improve traffic
forecasts and to have a better effect in comparison to the LSTM and GRU models. Their model achieved
smaller MAE and RMSE and higher accuracy than LSTM or GRU model.

Traffic Forecasting with Modeling Spatial Dependency

B, 11
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Unfortunately, most of these ML-based methods are unable to capture in deep the correlation among
different traffic conditions or other relevant traffic information. A representative characterisation of
those spatial-temporal features is the key to successful traffic forecasting. Over the past few years, one
of the most efficient deep neural networks to model the spatial dependencies is the convolutional
neural network (CNN) [47], as it uses filters to find relationships between neighbouring inputs, which can
make it easier for the network to converge on the correct solution. For long-term characterisation,
LSTMs seem to be the most suitable algorithm to be used, as they are able to learn both short-term and
long-term memory by enforcing constant error flow through the designed cell state [48]. In particular, to
capture the spatial dependency of the traffic, recent studies [49] [50] [51], propose to model the
transportation network as an image and use a CNN to extract spatial features while the historical data is
viewed as an image. To take full advantage of spatial features, some researchers use CNN to capture
adjacent relations among the traffic network, along with employing recurrent neural network (RNN) on
time axis. In [51], a CNN-based method is proposed that learns traffic as images and predicts large-scale,
network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to
images describing the time and space relations of traffic flow through a two-dimensional time-space
matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction
and network-wide traffic speed prediction. The performance of the proposed method is finally
compared with other naive algorithms namely ordinary least squares, k-NN, ANN, random forest,
stacked autoencoder, RNN, and LSTM networks. The results indicated an average of 42.91% accuracy
improvement within an acceptable execution time.

[52] investigated a spatiotemporal Bayesian Network predictor. This approach incorporated all the
spatial and temporal information available in a transportation network to carry out traffic flow
forecasting. In a transportation network, there are usually many road segments related to or providing
information about the traffic flow of the road segment under investigation. However, using all the
related segments as input variables (nodes) would involve much irrelevance and redundancy, as well as
being prohibitive computationally. To solve this problem, authors of [52] adopted the Pearson
Correlation Coefficient to rank the input variables (traffic flows) for prediction, and the best-first strategy
was employed to select only a subset as nodes of a Bayesian network.

In overall, the most popular solution is a combination of CNN and LSTM. In [49] Wu et al. based on the
assets of LSTMs and CNNs networks, and with consideration of the spatial-temporal characteristics of
traffic flow, proposed a novel short-term traffic flow prediction method based on the combination of
CNN and LSTM (CLTFP). They developed a short-term traffic flow prediction method based on the
combination of CNNs and LSTMs on an arterial road. In more detail, a one-dimension CNN was used to
illustrate spatial features of the traffic flow and two LSTMs for its short-term variability and periodicities.
Given those meaningful features, the feature-level fusion is performed to achieve short-term traffic flow
forecasting. The proposed CLTFP was compared with other popular forecasting methods and the
experimental results showed that the CLTFP has considerable advantages in traffic flow forecasting.
Although this method could extract spatiotemporal correlations on a single arterial road, it failed to
consider ramps, interchanges, and intersections, which are significant components of any transportation
network [12]. Thus, it ignores the effect of congestion in terms of spatial-propagation. For instance, a
traffic incident that occurs on one link may influence the traffic conditions in far-side regions. In order to
solve these drawbacks, [53] proposes a novel NN structure that combines deep 2D CNNs and deep
LSTMs to obtain the spatiotemporal correlations among all links in a traffic network. Specifically, they
manage the traffic network as a visual process, where every frame represents a traffic state and several
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future frameworks can efficiently use image-processing algorithms. The numerical experiments
demonstrate that the proposed model outperformed algorithms such as LSTMs, DCNNs, SAEs and SVM
method, in terms of accuracy and stability.

Summarising, these early works had one common drawback, all of them had ignored the topology
relations among the sensors, regardless they tried to model the spatial correlation, as the spatial
structure is in the Euclidean space (e.g., 2D images). For instance, two roads in different directions of a
highway, though close in Euclidean distance, can have significantly different traffic pattern because of
the network topology. Defferrard et al. [54] studied graph convolution, but only for undirected graphs.
In order to solve these problems, Li et al. [5], model the traffic flow as a diffusion process on a directed
graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning
framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic
flow. In particular, DCRNN captures the spatial dependency using bidirectional random walks on the
graph and the temporal dependency using the encoder-decoder architecture with scheduled sampling.
Later, in [55], the authors speed up this model by replacing RNN with CNN to model the temporal
dependency.

Conclusions

Overall, it is quite simpleminded to claim that one method is clearly superior over other methods in any
situation. One reason for this is that the proposed models that have been discussed above are
developed with a small amount of separate specific traffic data, and the accuracy of traffic flow
prediction methods is dependent on the traffic flow features embedded in the collected spatiotemporal
traffic data [56]. In addition, traffic flow is influenced by many factors like weather, the day of the week,
random events, road construction, lighting conditions, etc. Consequently, integration of external
environmental factors is also crucial to decrease the error of prediction. Traffic flows are non-linear,
mostly non-stationary processes influenced by many factors, as described earlier, while it also has
significant spatio-temporal properties [57]. In general, literature shows promising results when using
NNs, which have good prediction power and robustness. Although the deep architecture of NNs can
learn more powerful models than shallow networks, existing NN-based methods for traffic flow
prediction usually only have one hidden layer. It is hard to train a deep-layered hierarchical NN with a
gradient-based training algorithm.

By and large, the most suitable prediction model strongly depends on the basic points that the work
focuses, namely, in a microscopic view, the examination of the traffic flow at a specific point in space, or,
in a macroscopic view, the correlations determination of the road segments. Considering the existed
literature, it seems that the most promising models benefit from the spatio-temporal property of traffic
flows, such as time—space matrix models or region-based models. Nevertheless, there is a need for a
model that also works when the particles of the flow do not move in the same direction as vehicles.
Another conclusion that could extracted from the literature is that the most noticeable models are the
non-parametric ones, because they are able to handle non-linear, stationary or non-stationary, dynamic
processes, and they can also exploit the spatio-temporal relationship of traffic flows. Nowadays, the
most frequently uncounted models are variable neural networks such as LSTMs, CNN, or a combination
of both.
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2.2 Overview/Solution Description

The major goal of this work is implementing a theoretical approach on how an effective and accurate
method that will predict real-time traffic flow could be implemented. This could be crucial for vehicle’s
optimised route choice. In more detail, as the vehicle is moving, for the route selection the next few
minutes’ traffic flow, or even the next hours, could be considered. In this way, an overview of the road
condition is outlined and the possibility of getting the vehicle stuck in traffic jam will be decreased.
Eventually, for this purpose, several machine and deep-learning models will be investigated, so at the
end, the one with the most accurate, effective and fast performance will be chosen.

Generally, traffic flow prediction is an important component of traffic modeling, operation, and
management.
Traffic flow prediction has a pivotal role to play in intelligent transport systems due to:

e The continuous increasing amount of vehicles

e The development of the autonomous vehicles’ operations

By and large, traffic flow prediction is important for:
e Traffic Management
e Risk Assessment
e Public Safety

In our problem, accurate real-time traffic flow prediction can:
e provide information and guidance for the autonomous vehicles, to optimise the travel decisions
in order to avoid traffic jam and reduce cost
e provide users the fastest route to their destination
e provide information to passengers about the traffic state on roads for the next few minutes, or
even one hour later

Parameters must be examined:
o Traffic Flow at specific segments of the road (Vehicles / minutes of sample)
e Traffic Speed at specific segments of the road (Speed / minutes of sample)
e  Weather Conditions
e The day of the week (weekdays vs. weekends)
e Lighting Conditions
e Accidents
e Road construction

Solution of the examined problem

As discussed, several possible models are proposed in literature. In Figure 1, the most fundamental
techniques have been concentrated for an enhanced understanding.

No method is clearly superior over other methods in any situation
That is because:

**x 14
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e The traffic flow isinfluenced by factorssuch as the weather, the day ofthe week,
random events, road construction, lighting conditions

e |t also has significant spatio-temporal properties

e The amount of data consists also a crucial parameter for the model choice

Literature shows promising results when using NNs, which have good prediction power and robustness
e The most suitable prediction model strongly depends on the basic points that the work focuses:
e |n a microscopic view, the examination of the traffic flow at a specific point in space
e |n a macroscopic view, the correlations determination of the road segment

Time Series
Parametric
Technigues
Kalman Filtering
— CNN
Traffic Flow Prediction Models — ANN
— Bayesian Methods
— MLP
b= k-NN Algorithm
Support Vector
Non-Parametric Regression —  Supervised — e
Technigues
= RNN GRU
TDNN

— Deep Learning ™

= Unsupervised s Autoencoder

Figure 1: Traffic Flow Methods found in Literature.

More noticeable models are the non-parametric ones especially when there is a large amount of training
data (they can handle non-linear, stationary or non-stationary, dynamic processes)

e For exploiting the spatio-temporal relationship of traffic flows, the most frequently uncounted
models are variable neural networks such as LSTMs, CNN, or a combination of both

e Consequently, is it important to use several models, compare the prediction results with the
ones produced by baseline models and conclude, via evaluating the results, to an optimum
solution

2.3 Current Status and Progress
Initial investigation regarding the most suitable feature extraction methods and algorithms used.

e As there was no provided traffic flow data for the four cities the project is developed, namely
Lyon, Copenhagen, Geneva and Luxembourg, we initially utilised two open datasets and
extracted another one from an open platform from California State, Caltrans Performance

-‘** 15
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Measurement System (PeMS) in order to propose a methodology approach for the traffic flow
prediction task

e The examined sensors were located at specific points of the road, counting the number of
vehicles / 5min duration passing and the average speed

Three approaches were considered:

e Manual feature extraction from PeMS platform, suitable preprocessing and utilisation of
baseline time series techniques as ARIMA and VAR models for training and prediction.

e Manual feature extraction from PeMS platform, training and prediction using Deep Learning
algorithms, namely LSTM, GRU, CNN.

e A combination of a GCN and GRU model, in order to capture traffic forecasting’s spatial and
temporal dependences. The elementary idea is to use the historical n time series data as input
and the graph convolution network in order to illustrate topological structure of urban road
network to obtain the spatial feature. At a second time, the obtained time series with spatial
features are input into the GRU model and the dynamic change is achieved by information
transmission between the units, while capturing the temporal features. At the end the
prediction is performed as the two models are suitable connected in a layer.

Finally, we compared the manual extracted data from PeMS platform with two already existed datasets,
SZ-taxi dataset and Los-loop dataset, so as to have a more accurate evaluation of our models.

After the implementation of traffic-flow prediction models on public data, an overview of various
algorithms’ performance on such kind of tasks was retrieved. In order to adjust the aforementioned
implementation on the current task, traffic flow data from the pilot sites that the AV operated were
necessary. Nevertheless, the data collected from the AVs’ routes only included information on the traffic
speed of the particular AV at a specific timestamp. The average traffic speed of the road extracted from
all the passing vehicles was not possible to be collected with the existing equipment. Magnetic sensors,
infrared sensors, photoelectric sensors, Doppler and radar sensors, inductive loops and video camera
systems that are installed on, in and above the roadway constitute such systems that can provide the
required information [41]. As a result, there was no a realistic insight of the traffic state of the road from
the available data.

An alternative approach was applied in order to implement a solution that meets the T5.4 requirements.
In particular:

e Real-world data was collected from the pilot sites that the AV operated via TomTom API

e Weather historical data from the corresponding regions were also collected from the Visual
Crossing API

e Different machine learning and deep learning approaches were applied and the one with the
best performance was suggested as the optimum solution to provide an overview of the road
that the AV is operating

2.4 Dataset Overview

In this Section the public datasets as well as the datasets retrieved from the relevant APIs are described
in detail.
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2.4.1 Public Dataset

The first dataset we used was extracted from Caltrans Performance Measurement System (PeMS). The
freeway Performance Measurement System (PeMS) collects real time traffic data from sensors and
generates performance measures of vehicle miles traveled, hours traveled, and travel time. This project
is sponsored by the California Department of Transportation (Caltrans) and provides tools and reports
for traffic planners, operators, and engineers.

The traffic data is collected in real-time from over 39,000 individual detectors. These sensors span the
freeway system across all major metropolitan areas of the State of California. PeMS is also an Archived
Data User Service (ADUS) that provides over ten years of data for historical analysis. It integrates a wide
variety of information from Caltrans and other local agency systems including:

e Traffic Detectors

e Incidents

e Lane Closures

e Toll Tags

e Census Traffic Counts
e Vehicle Classification
e Weight-In-Motion

e Roadway Inventory

We estimate that similar measures could take place for the cities we are interested in (Lyon,
Copenhagen, Geneva and Luxembourg).

The already extracted datasets we used in order to compare the performance of our models and
confirmed that our models work properly and accurately, are SZ-taxi and Los-loop datasets. These two
sets are related to traffic speed, in contrast with PeMS dataset, thus we decide to use data related to
traffic flow. However, those two different features have the same structure, so they can both be used as
traffic information without loss of generality.

2.4.1.1 Loading Data

The PeMS dataset is available at . The traffic data is collected in real-time from
over 39,000 individual detectors which were deployed across the major metropolitan areas of California
state highway system. They were aggregated into 5-minute interval from 30-second data samples.

1. In our problem, we used a medium scale dataset as we randomly selected 241 sensors among
District 6 of California. We selected two months for examination (01/04/19 — 31/05/19) and
keep only the traffic flow information of weekdays. At the end, the used set was about
3.123.360 traffic flow data. Additionally, from the geographic coordinates of the sensors, the
241*241 adjacency matrix for the GCN model was calculated, by computing the driving distance
among them. Each row represents one sensor and the values in the matrix represent the
connectivity between the roads.

2. SZ-taxi. This dataset was the taxi trajectory of Shenzhen from Jan. 1 to Jan. 31, 2015. It was
selected 156 major roads of Luohu District as the study area. The experimental data mainly
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includes two parts. One is a 156*156 adjacency matrix, which describes the spatial relationship
between roads. Each row represents one road and the values in the matrix represent the
connectivity between the roads. Another one is a feature matrix, which describes the speed
changes over time on each road. Each row represents one road; each column is the traffic speed
on the roads in different time periods. This matrix aggregates the traffic speed on each road
every 15 minutes, for every of 156 roads. This dataset could be found at:
https://github.com/lehaifeng/T-GCN/tree/master/data .

3. Los-loop. This dataset was collected in the highway of Los Angeles County in real time by loop
detectors. We selected 207 sensors and its traffic speed from Mar.1 to Mar.7, 2012. This matrix
aggregates the traffic speed every 5 minutes, for every of 156 roads. Similarly, the data
concludes an adjacency matrix and a feature matrix. The adjacency matrix is calculated by the
distance between sensors in the traffic networks. Since the Los-loop dataset contained some
missing data, the linear interpolation method was used to fill missing values. This dataset could
be found at:
https://github.com/lehaifeng/T-GCN/tree/master/data .

2.4.1.2 Public Dataset Preview

In the PeMS dataset we picked 241 sensors located in Fresno, a town in California State. In Figure 2 the
traffic flow data of the first 8 sensors, which were selected are presented.

In Figure 3, we illustrate all the 241 sensors which were used and as it is shown, there might be a
topological correlation between some sensors which could affect the prediction. The illustration was
applied with the help of OSMnx package. This let us download spatial geometries and model, project,
visualize, and analyze real-world street networks from OpenStreetMap’s APls. Also, through this package
we can download and calculate the driving distance between specific locations on roads so as to
calculate the adjacency matrix.

Additionally, in Figure 4 and Figure 5 the SZ-taxi and Los-loop dataset were plotted, accordingly. Those
two datasets contain speed information, but the problem and the proposed solution remains the same.
They were used in order to compare the results and conclude to the optimal solution.
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Figure 2: Traffic flow display of first 8 sensors in PeMS dataset vs number of samples

’,
Ts PRERCICN g,
! é
. i
§ Cd
A &

" s
e Q.
-3 ‘.
. .
L ‘e
.
- .
% g
Lttt ede wiee
o
LY S
.
s
.
L4 .
-
. .
.
.-
.
.
.
.
.
.
.
.
.

Figure 3: Display of the used sensors in Fresno of California State
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Figure 4: Plot of the first 8 sensors' speed measurements in SZ-Taxi dataset vs number of samples
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2.4.2 TomTom API

The Traffic Flow service is a suite of web services that TomTom provides and designed for developers to
create web and mobile applications around real-time traffic. In particular, this service provides
information about the speeds and travel times of the road fragment closest to the given coordinates. The
data can be retrieved through the relevant RESTful APl which contains the following characteristics:

e Is updated every minute with the very latest traffic speed information
e |s based on the zooming level of different road categories that are displayed
e Provides traffic speed information for display on the map view with an option to use
the absolute or relative speed information.
e Returns detailed information about traffic speed that will be analysed below. Details include:
o Current speed
o Freeflow speed
o A quality indicator

In order to retrieve the traffic flow data, a user registration was required and a script was implemented
to request data via https method. In particular, the url format should be as follows:

https://[{baseURL Vtraffic/services/{versionNumber}/flowSegmentData/{style}/{zoom}/{format}?key={Your A
Pl Keyl&point={point}&unit={unit}&thickness={thickness}&openL r={boolean}&jsonp={jsonp}

The required parameters are described in detail in Table 3.

Table 3 : Request parameters for the TomTom Traffic Flow RESTful API

Required Description
parameters
baseURL The base URL for calling TomTom services.
string Values:
api.tomtom.com: The default global APl endpoint.
kr-api.tomtom.com: The region-specific endpoint for South Korea.
versionNumber The version of the service to call.
string Value: The current value is 4.
style The style used with Raster Flow Tiles and Vector Flow Tiles.
string This has an effect on the coordinates in the response.
Values:
absolute
relative
relativeO
relativeO-dark
relative-delay
reduced-sensitivity
zoom The zoom level.
integer This has an effect on the following items:
Traffic flow coordinates: There may be a slight deviation between the provided
coordinates on different zoom levels.
Visibility of the particular road: Roads of lower importance are only visible on zoom
levels with a higher value.
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When Flow Segment data is used together with the Traffic Flow service,
the zoom should be the same in both calls.
Values: [0,22]

format The content type of the response structure.
string If the content type is jsonp, a callback method can be specified at the end of the
service call.
Values:
xml
json
jsonp
key The authorization key for access to the API.
string Value: Your valid API Key.
point The coordinates of the point close to the road segment.
float They must be comma-separated and calculated using EPSG:4326 projection (also

known as WGS84).
Value: latitude, longitude

In particular, coordinates were given for the pilot sites of Slagelse, Luxembourg and Geneva which are
illustrated in Figure 6, Figure 7 and Figure 8 respectively. The following parameters were inserted as
input to the https request changing the location points according to the region, as shown in Table 4.
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Figure 6: AV route at Slagelse pilot site.
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Figure 8: AV route at Geneva pilot site.

Table 4: Input values to the TomTom RESTful API for collecting traffic flow data from each pilot site

Required Input for Slagelse Input for Luxembourg Input for Geneva
parameters
baseURL api.tomtom.com api.tomtom.com api.tomtom.com
versionNumber 4 4 4
style absolute absolute absolute
zoom 20 20 20
format json json json
key AP| KEY API KEY API KEY
point 55.40035296, 49.49407992995702, 46.206084,
11.36712993 5.9813682472420915 6.207991

The Flow Segment Data APl endpoint for a valid single request returns a response in XML or JSON
format. The response fields with the relevant description are analysed in Table 5.
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Table 5: Response fields from the Flow Segment Data API

Field Description
<flowSegmentData> Main response element.
object The version attribute indicates the software version that generated the
response.
<fre> Functional Road Class.
string This indicates the road type:
FRCO: Motorway, freeway or other major road
FRC1: Major road, less important than a motorway
FRC2: Other major road
FRC3: Secondary road
FRCA4: Local connecting road
FRC5: Local road of high importance
FRC6: Local road
<currentSpeed> The current average speed at the selected point, in the unit requested.
integer This is calculated from the currentTravelTime and the length of the selected

segment.

<freeFlowSpeed>
integer

The free flow speed expected under ideal conditions, expressed in

the unit requested. This is related to the freeFlowTravelTime

<currentTravelTime>
integer

Current travel time in seconds based on fused real-time measurements between
the defined locations in the specified direction

<freeFlowTravelTime>
integer

The travel time in seconds which would be expected under ideal free flow
conditions.

<confidence>
float

The confidence is a measure of the quality of the provided travel time and
speed.

A value ranges between 0 and 1 where 1 means full confidence, meaning that
the response contains the highest quality data.

Lower values indicate the degree that the response may vary from the actual
conditions on the road.

<coordinates>

This includes the coordinates describing the shape of the segment.

object Coordinates are shifted from the road depending on the zoom level to support
high quality visualization in every scale.

<openlr> The OpenlR code for segment

string

<roadClosure>
boolean

This indicates if the road is closed to traffic or not.

For example, given the coordinates that represent the vehicle shown in red in Figure 9, the API’s

response on the current timestamp is as follows: The frc indicates that the vehicle’s coordinates

corresponds to a local road, the average speed at the current time equals to 20 km/h and the free flow

speed is at 35 km/h. The confidence value is 1 and the returning coordinates are highlighted by the blue

points in the picture.
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2.4.2.1 Traffic flow data preprocess

The final dataset collected for each pilot site is illustrated in Table 6. Results for the Slagelse site which
was the one with the most operating time are presented. A similar procedure was followed for the sites
at Luxembourg and Geneva.

Table 6: Duration of traffic flow data from each pilot site.

Pilot site Duration of traffic flow data

Slagelse 5 months
Luxembourg 1 month

Geneva 1 month

In order to perceive a better insight of the road’s traffic flow, the Traffic Performance Index (TPI) for
each sample was calculated. TPI constitutes an indicator of traffic flow condition as it is a measure of
congestion. The possible values range between 0 and 1 inclusive where 1 is a traffic jam state and O is a
free flow state. A traffic jam state means that no vehicles can move, while a free flow state means that
all vehicles travel at maximum speed with no influence from other vehicles. Its formula is as follows:

TPI = (Vmax - Vi)/Vmax (1)

Where Vmax is the maximum speed of traffic data and Vi is the average link travel speed at a i-th time
period.

Figure 10 illustrates a characteristic example of the TPl indicator versus speed on time axis. As it is
shown, the TPl values represent a more realistic overview of the traffic state of the road.
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Figure 10: TPI representation versus traffic speed on time axis.

Data analysis procedures were applied on the collected data. Since the road where the AV operated was
a rural road, there was no significant traffic through the day. However, as it is shown in Figure 11, it was
observed that some days between 9am and 5pm the traffic appeared to be increasing. Therefore, the

traffic flow prediction model for the Slagelse pilot site focused on the working hours.
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Figure 11 : Traffic flow representation of several days at Slagelse pilot site.
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The traffic flow data was aggregated to half hour intervals and further processed to properly feed the
prediction models. A necessary preprocessing step in forecasting tasks is the definition of the past
timesteps and the forecast horizon parameters. This specifies how many observations the model will
take into account and how many timesteps ahead it will make a speed prediction for. For the specific
task, the past timesteps were set equal to one and a half hour and the forecast horizon to half an hour
as itis illustrated in Figure 12.
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Figure 12: Definition of the past timestamps and forecast horizon parameters.

2.4.3 Visual Crossing API

Visual Crossing Weather is an open source service that provides access to weather forecast data,
historical weather observation data and historical summary data. The data is accessible in three ways —
directly in the browser, as a data download or as a RESTful API link. For the needs of the particular task
historical weather data from Slagelse were also collected. The API provides sub-hourly, hourly and daily
weather and climate data elements. In particular the response weather data elements are analysed in
Table 7.

Table 7 : Response data elements of the Visual Crossing Weather API

Data element Description

cloudcover how much of the sky is covered in cloud ranging from 0-100%

conditions textual representation of the weather conditions.

description longer text descriptions suitable for displaying in weather displays. The

descriptions combine the main features of the weather for the day such as
precipitation or amount of cloud cover. Daily descriptions are provided for
historical and forecast days. When the timeline request includes the model
forecast period, a seven day outlook description is provided at the root
response level.

datetime ISO formatted date, time or datetime value indicating the date and time of
the weather data in the local time zone of the requested location
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datetimeEpoch

number of seconds since 1st January 1970 in UTC time

tzoffset the time zone offset in hours. This will only occur in the data object if it is
different from the global time zone offset.

dew dew point temperature

feelslike what the temperature feels like accounting for heat index or wind chill. Daily

values are average values (mean) for the day.

feelslikemax (day only)

maximum feels like temperature at the location.

feelslikemin (day only)

minimum feels like temperature at the location.

hours array of hourly weather data objects. This is a child of each of the daily
weather object when hours are selected.

humidity relative humidity in %

icon a fixed, machine readable summary that can be used to display an icon

moonphase represents the fractional portion through the current moon lunation cycle
ranging from 0 (the new moon) to 0.5 (the full moon) and back to 1 (the next
new moon)

normal array of normal weather data values — Each weather data normal is an array

of three values representing, in order, the minimum value over the statistical
period, the mean value, and the maximum value over the statistical period.

offsetseconds (hourly
only)

time zone offset for this weather data object in seconds — This value may
change for a location based on daylight saving time observation.

precip

the amount of liquid precipitation that fell or is predicted to fall in the period.
This includes the liquid-equivalent amount of any frozen precipitation such as
a snow or ice.

precipcover (days only)

the proportion of hours where there was non-zero precipitation

precipprob (forecast
only)

the likelihood of measurable precipitation ranging from 0% to 100%

preciptype an array indicating the type(s) of precipitation expected or that occurred.
Possible values include rain, snow, freezingrain and ice.

pressure the sea level atmospheric or barometric pressure in millibars (or
hectopascals)

snow the amount of snow that fell or is predicted to fall

snowdepth the depth of snow on the ground

source the type of weather data used for this weather object. — Values include

historical observation (“obs”), forecast (“fcst”), historical forecast (“histfcst”)
or statistical forecast (“stats”). If multiple types are used in the same day,
“comb” is used. Today a combination of historical observations and forecast
data.

stations (historical only)

the weather stations used when collecting an historical observation record

sunrise (day only)

The formatted time of the sunrise (For example “2022-05-23T05:50:40")

sunriseEpoch

sunrise time specified as number of seconds since 1st January 1970 in UTC

time
sunset The formatted time of the sunset (For example “2022-05-23720:22:29”)
sunsetEpoch sunset time specified as number of seconds since 1st January 1970 in UTC

time

moonrise (day only,

The formatted time of the moonrise (For example “2022-05-23T02:38:10")
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optional)

moonriseEpoch (day
only, optional)

moonrise time specified as number of seconds since 1st January 1970 in UTC
time

moonset (day
optional)

only,

The formatted time of the moonset (For example “2022-05-23T13:40:07")

moonsetEpoch (day
only, optional)

The formatted time of the moonset (For example “2022-05-23T13:40:07")

temp

temperature at the location. Daily values are average values (mean) for the
day.

tempmax (day only)

maximum temperature at the location.

tempmin (day only)

minimum temperature at the location.

uvindex a value between 0 and 10 indicating the level of ultra violet (UV) exposure for
that hour or day. 10 represents high level of exposure, and 0 represents no
exposure. The UV index is calculated based on amount of short wave solar
radiation which in turn is a level the cloudiness, type of cloud, time of day,
time of year and location altitude. Daily values represent the maximum value
of the hourly values.

visibility distance at which distant objects are visible

winddir direction from which the wind is blowing

windgust instantaneous wind speed at a location — May be empty if it is not
significantly higher than the wind speed.

windspeed the sustained wind speed measured as the average windspeed that occurs

during the preceding one to two minutes.

windspeedmax (day
only, optional)

maximum wind speed over the day.

windspeedmean (day
only , optional )

average (mean) wind speed over the day.

windspeedmin (day only
, optional )

minimum wind speed over the day.

solarradiation

(W/m2) the solar radiation power at the instantaneous moment of the
observation (or forecast prediction)

solarenergy MJ /m2 ) indicates the total energy from the sun that builds up over an hour
or day.

severerisk — (forecast | a value between 0 and 100 representing the likelihood of severe weather

only) such as thunderstorms, hail or tornados. 0 is very low chance of severe

weather. 30-60 represents there is a chance of severe weather, 60-100
indicates there is a high chance of severe weather.

degreedays (day only)

Optional elements indicating the number of degree days for this date. See
the degree days APl for more information on degree days. To turn degree

days and degree day accumulation on, use the elements parameter.

A visual representation of the weather information that the Visual Crossing Weather API provides, is

illustrated in Figure 13.
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Figure 13 : Visual Representation of the weather data of Visual Crossing API.

2.5 Methodology

In this Section, the methodology followed on the public dataset as well as the real-world dataset that
was collected from the APlIs, is described in detail. The machine and deep learning algorithms that were
applied, the parametrization and the results extracted in each case, are also illustrated and further
discussed.

2.5.1 Methodology on the public dataset

In order to find the optimum solution in the traffic prediction problem, we applied several models and
compared the results. At a second phase we modify them in order to improve their performance. In
Figure 14, we summarize the procedure that was followed.

Training model

................. -
'
1
Parametric Techniques '
(Kalman fitterning
Timeseries) :

: Apply the Compare MSE, Pre‘(:/li&t:}‘ ftl::: l;*eg?ﬁlc
: testing dataset MAE, Accuracy performed model
Non-Parametric '
Techniques
(Deep Learning)

Real-time Data
trafg; t:;ow preprocessing Outlier removal

Figure 14 : Methodology followed on the public datasets.

As the real-time data set from PeMS platform was collected, the data preprocessing followed. In the
experiments, the input data was normalized to the interval [0,1]. In addition, for every dataset, 80% of
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the data was used as the training set and the remaining 20% was used as the testing set. We predicted
the traffic speed of the next 5 minutes, 15 minutes, 30minutes, 45 minutes and 60 minutes. Since each
time series may have a different traffic flow pattern and no pattern could fit all the traffic flow series, we
create a unique model for each of the traffic flow series collected by a single sensor. This method
applied to all the implemented techniques.

The training data was used to select the model features and set the values of the coefficients, and the
primary testing data was used to evaluate the model performance. Multiple metrics were used to
evaluate our predictive performance: Mean Squared Error (MSE), with units of cycles, and Mean
Absolute Error (MAE), Accuracy, R?, Var. In more detail, RMSE and MAE are used to measure the
prediction error: the smaller the value is, the better the prediction effect is. Accuracy is used to detect
the prediction precision: the lager the value is, the better the prediction effect is. R2and Var calculate
the correlation coefficient, which measures the ability of the prediction result to represent the actual
data: the larger the value is, the better the prediction effect is.

Finally, we compare the performance of different baseline, deep learning and complex custom models
such as ARIMA, VAR, LSTM, GRU, CNN and T-GCN, regarding the three datasets.

1. Mean Squared Error (RMSE):

n

1
MSE = EZ(Yt — 1)’ @)
i=1
2. Mean Absolute Error (MAE):
n
1
MAE=—ZYt—Y"tV (3)
=
3. Accuracy:
[y -7
Accuracy =1 — ———F (4)
Y Y1l
4. Coefficient of Determination (R?):
2
pz_ g iz — %) (5)

o2
Yie1(Y: = Y2)

5. Explained Variance Score (Var):

Var{Y - Y}

Var{Y} (6)

var =1—

2.5.1.1 ARIMA model

ARIMA(p,d,q) forecasting equation: ARIMA models are, in theory, the most general class of models
for forecasting a time series which can be made to be “stationary” by differencing (if necessary), perhaps
in conjunction with nonlinear transformations such as logging or deflating (if necessary).

The acronym ARIMA stands for Auto-Regressive Integrated Moving Average. Lags of the stationarized
series in the forecasting equation are called "autoregressive" terms, lags of the forecast errors are called
"moving average" terms, and a time series which needs to be differenced to be made stationary is said
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to be an "integrated" version of a stationary series. Random-walk and random-trend models,
autoregressive models, and exponential smoothing models are all special cases of ARIMA models.

A non-seasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where:

e pisthe number of autoregressive terms,
e disthe number of non-seasonal differences needed for stationarity, and
e qisthe number of lagged forecast errors in the prediction equation.

AR(p) means p lagged error terms are going to be used in the ARIMA model. ARIMA relies on
Autoregression, which is a process of regressing a variable on past values of itself. Autocorrelations
gradually decay and estimate the degree to which white noise characterizes a series of data.

Integrated (d): If a trend exists then time series is considered non stationary and shows
seasonality. Integrated is a property that reduces seasonality from a time series. ARIMA models have a
degree of differencing which eliminates seasonality

Moving Average MA (q): Error terms of previous time points are used to predict current and future
point’s observation. Moving average (MA) removes non-determinism or random movements from a
time series. The property Q represents Moving Average in ARIMA. It is expressed as MA(x) where x
represents previous observations that are used to calculate current observation.

Moving average models have a fixed window and weights are relative to the time. This implies that the
MA models are more responsive to current event and are more volatile.

The forecasting equation is constructed as follows. First, lety denote the d" difference of Y, which
means:

fd=0:y, =Y,

fd=1:y, =Y, — Y4

fd=2y, =(Ylt-Y ) - Ylt-1-Y, ) =Y, =2V, 1+ Y,
ARIMA(1,1,2) without constant = damped-trend linear exponential smoothing:

Yo=Y+ (Y|t —1-Y,,) — 61e, 1 — 61,4 (7)
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Figure 15 : Prediction results using ARIMA model on PeMS dataset
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Figure 16: Prediction results using ARIMA model on SZ-Taxi dataset
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Figure 17: Prediction results using ARIMA model on Los-Loop dataset
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Table 8 : Performance metrics using ARIMA model on public datasets

MAE MSE Var R? Accuracy

1"t Sensor/ PeMS-Data | 3.062 18.176 0.759 0.759 0.69261

175t Sensor/SZ-Taxi 2.454 21.78 0.8855 | 0.8855 0.9244

17St Sensor/Los-Loop 2.494 | 10.872 0.238 0.238 0.898

2.5.1.2 Vector Autoregressions (VAR) Model

The vector autoregression model (VAR), is arguably the simplest and most often used multivariate time
series model for forecasting. It is a stochastic process model used to capture the linear
interdependencies among multiple time series. VAR models generalize the univariate autoregressive
model (AR model) by allowing for more than one evolving variable. All variables in a VAR enter the
model in the same way: each variable has an equation explaining its evolution based on its own lagged
values, the lagged values of the other model variables, and an error term. VAR modeling does not
require as much knowledge about the forces influencing a variable as do structural models with
simultaneous equations: The only prior knowledge required is a list of variables which can be
hypothesized to affect each other intertemporally. Consider a first-order VAR, call it VAR(1):

Rt = @, + PRi_1 + &, Var(e) =2 (8)

where R; is a by 1 vector of variables.
The bivariate case is:

Rit = @01+ P11Ryp—1 + PraRy 1 + &1t (9)
Ryt = o1+ PoiRy 1 + PoaRy g + &5 (10)
— True Data
10 - Prediction data with VAR
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| i
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Figure 18 : Prediction results using VAR model on PeMS dataset
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Table 9 : Performance metrics comparison using the ARIMA and VAR statistical models on the public

datasets
Model 175t Sensor/ PeMS-Data 175t Sensor/SZ-Taxi 175t Sensor/Los-Loop
MAE MSE MAE MSE MAE MSE
ARIMA 3.062 18.176 2.494 10.872 2.454 21.78
VAR 3.81 14.52 2.68 12.06 4.983 51.79

2.5.1.3 LSTM Model

LSTM has been widely used in many fields and achieved great success, such as in music generation,
image caption, speech recognition and machine translation. LSTM improves the hidden-layer cell on the
basis of RNN. The improvement of cell can make up for the gradient disappearance problem of RNN.
LSTM adds some memory units, including forget gate, input gate and output gate. The memory units can
further control the data and decide which should be retained and which should be deleted.

In traffic flow prediction, LSTM models have been used widely, as they achieve to skip the gradient
descent problem. LSTM model was applied using Tensorflow 2.0 and Keras 2.3.1 Functional API as
backend. Two different sequences of layers have been examined, which are illustrated in Figure 19 and
Figure 20.

The following parameters were used for training the neural network models.

Table 10 : Parameters used for training LSTM

Parameter Value
Optimizer Adam
Learning Rate 0.0001
Batch Size 64
Loss Function MSE
Gradient Norm Scaling 1
Early Stopping Patience 30
Input: (None,lS,lﬂ ( Input: | (None,15,1) ] ( Input: (None,64)]
LSTM 1: Input Layer > »| Dense

LSTM 1
L Output: (None,15,128J

Figure 19 : Architecture of LSTM 1

L Qutput: [ (None,1) J

Output: (None,lS,lJ

( Input: (None,lz,ezq j Input: (None,ﬁd)} Input: (None,M)]

LSTM?2  Dropout 1
L Output: (None,64)J L Output: (None,M)J

Figure 20: Architecture of LSTM 2

Input: (None,lz,lq ( Input: (None,lz,l)w
J » LSTM1

)

Dense

LSTM L: Input Layer

Y
L4

T TN

Output: | (None,12,1; Output: [None,lZ.GAj Output: (None,l)J
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Figure 21 : Comparison of MAE and MSE for the different sequences of layers

2.5.1.4 GRU model

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014
by Kyunghyun Cho et al. GRU can also be considered as a variation on the LSTM because both are
designed similarly and, in some cases, produce equally excellent results. The GRU is like a long short-
term memory (LSTM) with a forget gate but has fewer parameters than LSTM, as it lacks an output gate.
GRU's performance on certain tasks of polyphonic music modeling, speech signal modeling and natural
language processing was found to be similar to that of LSTM. GRUs have been shown to exhibit even
better performance on certain smaller and less frequent datasets.

Table 11 : Performance metrics comparison using LSTM and GRU model on the public datasets

Model 175t Sensor/ PeMS-Data 175t Sensor/SZ-Taxi 175t Sensor/Los-Loop
MAE MSE MAE MSE MAE MSE

LSTM 3.29 21 4.62 37.49 2.98 30.58

GRU 3.4 22.31 4.63 37.34 3.15 31.78

2.5.1.5 Convolutional Neural Networks

As it is already discussed, CNNs can be applied to time series forecasting. In order to do a prediction for
the next 5 minutes traffic flow we used an one 1D CNN. A one-dimensional CNN is a CNN model that has
a convolutional hidden layer that operates over a 1D sequence. This is followed by perhaps a second
convolutional layer in some cases, such as very long input sequences, and then a pooling layer whose job
is to distill the output of the convolutional layer to the most salient elements. The convolutional and
pooling layers are followed by a dense fully connected layer that interprets the features extracted by the
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convolutional part of the model. A flatten layer is used between the convolutional layers and the dense
layer to reduce the feature maps to a single one-dimensional vector.

Table 12 : Performance metrics comparison using CNN, LSTM, GRU and VAR models on public datasets

PEMS-DATA PEMS-DATA | Los -speed(773869) | Sz -speed(90217) Sz-
Model | (SENSORO) | (SENSOR 25) speed(90224)
MAE-MSE MAE-MSE MAE-MSE MAE-MSE MAE-MSE
CNN 3.08-18.34 2.42-10.23 5.53-49.5
LSTM 3.29-21 15.32-506.37 2.98-30.58 4.62-37.49 8.78-117.05
GRU 3.4-22.31 15.53-517.22 3.15-31.78 4.63-37.34
VAR 3.81-14.52 10.92-42.09 2.68-12.06 5.96-58.32

2.5.1.6 Graph Convolutional Neural Networks

As it is already discussed traffic flow data has spatial dependencies. A representative characterization of
the spatial-temporal features is the key to successful traffic forecasting. A T-GCN model proposed in
literature [58] was used in order to further improve the results of prediction. This model, consists of two
parts: the graph convolutional network and the gated recurrent unit. As is shown in Figure 22 the
historical n time series data performs as the input of the model and the graph convolution network is
used to capture spatial structure of urban road network to obtain the spatial feature. Second, the
obtained time series with spatial features are input into the gated recurrent unit model and the dynamic
change is obtained by information transmission between the units, to capture temporal feature. Finally,
we get results through the fully connected layer.

o) (en) \jx(_k‘ ) ‘ \[ ) Inputs
| 8
¥ i i ——
GCN GCN GCN GCN | Spatial Feature

e e e e
R
|
|

GRU » GRU » GRU » GRU iTcmporal Fcuturcj%
v Lk
Xier Prediction

Figure 22 : Overview of taking the historical traffic information as input and obtain the finally
prediction result through the Graph Convolution

To capture the spatial and temporal dependences from traffic data at the same time the overall T-GCN
model was used, which is illustrated in Figure 23. The left side is the process of spatio-temporal traffic
prediction, the right side shows the specific structure of a T-GCN cell, h;_;denotes the output at time t-
1, GC is graph convolution process, and u;, 13are update gate and reset gate at time t, while h; denotes
the output at time t. f (4, X;) represents the graph convolution process and is defined as:

f(X,A) = o(ARelu(Axwy)wy)
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-1 -1
where X represents the feature matrix, A represents the adjacency matrix A =D2AD2 denotes

preprocessing step, & = A + I is a matrix with self-connection structure, D is the degree matrix, D =
YjA&j. Wy and W, represent the weight matrix in the first and second layer, and o(-),
Relu( )represent the activation function.

Yis Y, Y,
A A A
A cell of S 4w » h,
: - ;1 T-GON Model
TGCN TGCN TGCN .~
cell | ™2 el | ™ | cell el
A A A .
x, 1 GC »{x)- X ¢ » Y,
X X X

Figure 23: Overall process of spatio-temporal prediction. The right part represents the specific
architecture of a T-GCN unit, and GC represents graph convolution

Adjacency Matrix of SZ-Taxi and Los-Loop dataset

The adjacency matric is available in

Definitions for the matrices used, regarding Graph Theory

Road Network G: an unweighted graph G = (V, E) was used to describe the topological structure of the
road network, and we treat each road as a node, where V is a set of road nodes ,V = {v1,v2,---,uN}, N
is the number of the nodes, and E is a set of edges. The adjacency matrix A is used to represent the
connection between roads, A € RNV, The adjacency matrix contains only elements of 0 and 1. The
element is 0 if there is no link between roads and 1 denotes there is a link.

Feature Matrix XVXP: Traffic information on the road network as the attribute feature of the node in

the network, is expressed as X € RNXP

, Where P represents the number of node attribute features (the
length of the historical time series) and X, € R¥X! is used to represent the speed on each road at time i.
As mentioned, the node attribute features can be any traffic information such as traffic speed, traffic

flow, and traffic density.

Thus, the problem of spatio-temporal traffic forecasting can be considered as learning the mapping
function f on the premise of road network topology G and feature matrix X and then calculating the
traffic information in the next T moments

Proposed Adjacency Matrix:

g 2
wy = exp(—ﬁ), i #jandexp —>2 > 11)

0, otherwise
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where dizj is the driving distance, o2 = 10 considering a gaussian normalization process and € an
empirical boundary.
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Figure 24: Zoom in network's correlations
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Figure 25: Prediction results of T-GCN algorithm on SZ-taxi public dataset.

Table 13: Performance metrics of T-GCN algorithm on SZ-taxi public dataset.

T-GCN SZ-Taxi
MSE MAE ACC R2 VAR
Epoch: 80 2832 | 4.002 |0.629 |0.7404 |0.74052
Epoch: 1000 18.181 |2.9387 |0.702 | 0.833 0.8339
Epoch: 1500 16.97 | 2.85 0.706 | 0.8385 | 0.837
100 - —— prediction
— frue
50
0_
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Figure 26: Prediction results of T-GCN algorithm on PEMS public dataset.
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Table 14: Performance metrics of T-GCN algorithm on PEMS public dataset.

T-GCN PEMS
MSE | MAE | ACC |R2 VAR
Epoch: 1500 | 25.32 | 11.85 | 0.683 | 0.743 | 0.745

2.5.2 Results comparison

Table 15: Performance metrics comparison using CNN, LSTM, GRU and VAR models on public datasets.

Model |PEMS-DATA |PEMS-DATA | Los -Loop (773869) | Sz-Taxi (90217) Sz-Taxi (90224)
(SENSOR0) | (SENSOR 25)
MAE-MSE MAE-MSE MAE-MSE MAE-MSE MAE-MSE
CNN  [3.08-18.34 2.42-10.23 5.53-49.5
LSTM  3.29-21 15.32-506.37 |2.98-30.58 4.62-37.49 8.78-117.05
GRU  [3.4-22.31 15.53-517.22  |3.15-31.78 4.63-37.34
VAR 3.81-14.52 10.92-42.09  |4.938-51.79 2.68-12.06 5.96-58.32

As it is witnessed in Figure 21 the prediction is not so good in some specific sensors. That is due to the
different characteristics of the timeseries in every sensor. By and large, the timeseries that is highly
stochastic is not so easy both in training and in prediction. For this reason, the most “problematic”
sensors were isolated for further examination. More specifically, we kept a sensor that gave a good
performance, such as sensor 0 at PeMS data, for training the LSTM and GRU model and then test the
data of sensor 25 for evaluation.

36.90
36.85
E‘ ©
$ 36.80 °
o g
(] A
2 36.75 - ) P )
v ’ L 100
©
=
£ 36.70 1 L 75
(o]
—
L 50
36.65 N
® L 25
36.60 L

Longitude [degrees]

Figure 27: Map of Fresno's traffic flow for the next five minutes.
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2.5.3 Methodology on the real-world data

In order to find the optimum solution for the traffic flow prediction task using the real-world data both
statistical and machine learning algorithms were applied. In particular, the ARIMA model, XGBoost
gradient-boosted decision tree (GBDT) and LSTM models were tested and their performance was
compared in terms of the performance metrics mentioned in Section 2.5.1.

Traffic flow data combined with weather information such as the temperature, were used as input
features to the models. The final models are taking as input the estimated traffic speed of the road and
the temperature in the last hour and a half and they’re predicting the traffic speed in the next half hour.
In each case, the dataset was divided into training and validation set with a ratio of 80% and 20%
respectively.

2.5.3.1 SARIMAX model

Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors, or SARIMAX, is an
extension of the ARIMA class of models. ARIMA includes an autoregressive integrated moving average,
while SARIMAX includes seasonal effects and eXogenous factors with the autoregressive and moving
average component in the model. In the SARIMAX models parameter, two kinds of orders need to be
provided. The first one is similar to the ARIMAX model (p, d, q) as it is mentioned in Section 2.5.1.1, and
the other is to specify the effect of the seasonality. This order is called seasonal order and requires four
elements to be configured:

Seasonal autoregressive order

Seasonal difference order

Seasonal moving average order

The number of time steps for a single seasonal period

PwnNPE

Mathematically the model is expressed as:

0p ()P, (LAY y, = A(t) + 0,(L)0, (L°) € (12)

® @, (L) is the non-seasonal autoregressive lag polynomial

*  @,(L%)is the seasonal autoregressive lag polynomial

e A%APy, is the time series, differenced d times, and seasonally difference D times
e A(t) is the trend polynomial (including the intercept)

e 04(L) is the non-reasonal moving average lag polynomial

. Q_Q (L%) is the seasonal moving average lag polynomial

Using the weather temperature as an exogenous factor and defining the p,q,d parameters to 3,2,1
respectively the results emerged from the SARIMAX model are illustrated in Figure 28. As it is shown, in
most cases the SARIMAX model correctly predicts the traffic speed the next half hour, recognising when
the traffic speed is increased and missing only the exact values of the peaks in the diagram. Table 16
illustrates the performance metrics using SARIMAX model on Slagelse traffic data.
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Figure 28: Prediction results using SARIMAX model on Slagelse data

Table 16 : Performance metrics using SARIMAX model on Slagelse data
Dataset MAE MSE Var R2
Slagelse data 0.0784 0.0261 0.0371 0.0370

2.5.3.2 XGBoost model

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, GBDT machine learning library. It
provides parallel tree boosting and is a dominant solution in time series forecasting problems as it is
considered as an advancement of traditional modelling techniques (e.g., ARIMA, VAR).

There is a plethora of tuning parameters for tree-based learners in XGBoost, the most common of those

are:
o learning_rate: step size shrinkage used to prevent overfitting. Range is [0,1]

max_depth: determines how deeply each tree is allowed to grow during any boosting round.

subsample: percentage of samples used per tree. Low value can lead to under fitting.

colsample_bytree: percentage of features used per tree. High value can lead to overfitting.

n_estimators: number of trees to build.

o objective: determines the loss function to be wused like reg:linear for regression
problems, reg:logistic for classification problems with only decision, binary:logistic for
classification problems with probability.

XGBoost also supports regularization parameters to penalize models as they become more complex and
reduce them to simple (parsimonious) models.

e gamma: controls whether a given node will split based on the expected reduction in loss after
the split. A higher value leads to fewer splits. Supported only for tree-based learners.
e alpha: L1 regularization on leaf weights. A large value leads to more regularization.
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e lambda: L2 regularization on leaf weights and is smoother than L1 regularization.

Using GridSearchCV as a brute force method to seek for the best parameters, those chosen to be used as
input to the model are shown in Table 17. The results emerged from this parametrization are also
illustrated in Figure 29. Table 18 shows in detail the performance metrics of this implementation.

According to the above, XGBoost appeared to be less effective in predicting the traffic speed on the

specific pilot site.

Table 17 : XGBoost hyper parameters

Parameters Value
learning_rate 0.3
max_depth 7
subsamples 1
colsample_bytree 1
n_estimators 12
objective squarederror
gamma 0
alpha 1
lambda 1
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Figure 29 : Prediction results using XGBoost model on Slagelse data

Table 18 : Performance metrics using XGBoost on Slagelse data
Dataset MAE MSE Var R2
Slagelse data 0.1500 0.0421 -0.6117 -1.0656

2.5.3.3 LSTM model

As already described, LSTM models have been widely used in traffic flow prediction problems since they
have reported better performance than some common that used traditional prediction models.
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Therefore, a vanilla LSTM architecture with 50 units (Figure 30) has been tested on Slagelse data in order
to evaluate its performance for the specific traffic flow prediction problem.

Input
Input | npu |N0ne, 3,2

| Input | None, 3, 2

S

> LSTM

layer | Qutput | None, 3, 2 |

Qutput

-

None, 3, 50

Input | None, 3, 50

Dense

Figure 30 : Architecture of vanilla LSTM model.

Qutput | None, 1

The dataset was divided into training and validation set with a ratio of 80% and 20% respectively. For
this regression problem, the stochastic gradient descent (SGD) and the MeanSquaredError loss function
for optimization have been used. Figure 31 and Table 19 illustrate the prediction results emerged from
the LSTM model. As it is shown, LSTM appeared to be less efficient on the current problem, probably

due to the small dataset size.

tomtom dataset - Prediction results

—— True Data

0.8 1

g
=]
|

Traffic flow
=]
=Y
L

Prediction data with LSTM

Al

0.2 1 n A \)A
0o 1A
o 6® oF G ® G® o

Time

!

T
ol

Figure 31: Prediction results using LSTM model on Slagelse data.

Table 19 : Performance results using LSTM model on Slagelse data.

Dataset

MAE

MSE

Var

R2

Slagelse data

0.0857

0.0201

0.0276

0.0128

2.5.4 Results comparison

After experimenting with different models and various parametrizations, SARIMAX appeared to achieve
the highest performance on Slagelse data as it is shown in Table 20. Therefore, the statistical model,
SARIMAX is suggested as the optimum solution for predicting traffic speed on this specific pilot site and
providing an insight of the traffic road state each half hour. In general, statistical models are preferable
when the dataset size is small and there is no high complexity of data.

44



D5.6 Transport service optimization approach and results

=AVENUE

Table 20 : Comparison of performance metrics using SARIMAX, XGBoost and LSTM model.

Model MAE MSE Var R2
SARIMAX | 0.0784 | 0.0261 | 0.0371 | 0.0370
XGBoost | 0.1500 | 0.0421 | -0.6117 | -1.0656
LSTM 0.0857 | 0.0201 | 0.0276 | 0.0128

2.6 Future Work

Since traffic data for each pilot site was not directly available via the existing equipment, additional
procedures were needed to acquire necessary data for the T5.4 implementation. Moreover, the fact that
the pilot site in Slagelse is a rural road and in most cases there was no significant traffic, rendered a large
part of the data unusable for the model training. Therefore, additional data would enhance model’s
performance having a better insight of the area for the entire year. The working, and non-working traffic
prediction models could be further improved and a model would be developed and activated for each

season, month, week, etc. based on the input features.
Finally, in order to create traffic prediction models for all the pilot sites, a large amount of traffic data
should be collected for each of them. Thus far, the amount of data is not sufficient to train a deep
learning model for the remaining pilot locations whose coordinates have been provided. After the
collection of complementary data, the process described in the current deliverable would also be

applied to the new pilot sites data. The proposed model architectures would be tested and compared
having as input the new data and the one with the best performance would be suggested as the
optimum solution for predicting the traffic speed on the specific road.
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3 Energy Consumption in Electric

Vehicles

Electric vehicles (EVs) and Autonomous vehicles (AVs) are emerging solutions and have become viable
technology in recent years. AVs are considered a major disruptive technology in public transportation.
Since that, decades of research have been spent on batteries and power electronic development. The
technology to enable vehicle automation is developing rapidly, however, energy consumption remains
an open problem.

AVs are equipped with certain automated features, such as adaptive and optimised energy prediction.
At AVs, improvements in energy consumption efficiency can be achieved through energy management
strategies, such as battery level prediction. Proper estimation and prediction at the battery level can be
approached using machine learning concepts.

In the next sessions, state of the art and data analysis on AV battery data is presented. Moreover, a
prediction model for energy consumption is described. The data of the current document are associated
with the HOLO vehicles.

3.1 Literature Review

Recent studies have shown the necessity of electric AVs in public transportation. AVs generally use
electricity to operate and in most cases are equipped with embedded high-technological sensors. This
new technology can transport passengers without the need for drivers and fossil-fuel-driven engines
that can pollute the atmosphere. Many European citizens are affected by air pollution and they are
exposed to high levels of pollution that can be harmful to public health?. Electric or even hybrid AVs have
widespread use, however, energy management in these vehicles is of major importance. It is necessary
to investigate novel methods to properly manage energy consumption. The current studies are focused
basically on establishing optimal approaches for energy consumption in hybrid vehicles. There is still a
gap in the research of holistic energy efficiency on fully electric AVs. For this reason, more and more
studies are researching robust ways to tackle the energy consumption challenge in AVs. In [59] several
board categories that can influence the energy consumption in AVs are discussed. This paper remarks
significant factors among vehicle characteristics, transportation network and consumer choice are
affecting the energy consumption in AVs. Moreover, in [60] he authors propose an interesting method
that employs fuzzy-logic advances to reduce the energy consumption of the vehicle. This work relies on
modelling several factors among environmental, vehicle operation and specification. Based on these, a
schematic power flow model was studied.

L https://www.eea.europa.eu/media/infographics/air-pollution-exposure-in-cities
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3.2 Battery Data from HOLO AVs

HOLO provided energy data from five weeks in order to understand and analyse patterns and trends in

the battery levels from AVs. Figure 32 presents an indicative example of the structure of input energy
data. The timestamp of the recording as well as the location in the form of latitude and longitude, are
delivered. Moreover, information for the battery is given involving the battery status which describes if
the AV is charging or not and the current battery level, which can take values from 0 to 100. Finally,
route details are offered to define the speed of the AV, the covered distance and the navigation mode,
which refers basically to AYTO and MANUAL in cases where the operator handles the vehicles.

timestamp timestamp_int battery_status battery level speed_value distance latitude longitude navigation_mode

2021-10-18 06:20:40.411 UTC
2021-10-18 06:20:41.413 UTC
2021-10-18 06:20:42.413 UTC
2021-10-18 06:20:43.413 UTC
2021-10-18 06:20:44.414 UTC
2021-10-18 06:20:45.415 UTC

1.634538E+12 NO_CHARGE
1.634538E+12 NO_CHARGE
1.634538E+12 NO_CHARGE
1.634538E+12 NO_CHARGE
1.634538E+12 NO_CHARGE
1.634538E+12 NO_CHARGE

100
100
100
100
100
100

Oooooo

0/55.4006950000032
0/55.4006950000032
0/55.4006950000032
0/55.4006950000032
0/55.4006950000032
0/55.4006950000032

11.367751 AUTO
11.367751 AUTO
11.367751 AUTO
11.367751 AUTO
11.367751 AUTO
11.367751 AUTO

Figure 32: Sample of energy data provided by HOLO

Using the knowledge mentioned above, the battery prediction problem was formulated. However, at
this point, it is important to note that to model AV energy consumption properly, more information is
required. Several external factors among the number of passengers, probable slopes on the route, and
air-conditioning enabling can affect the energy consumption in an AV.

Despite that, in the AVENUE project, we try to develop an initial model for battery prediction that can be
easily adapted to future solutions with additional data.

In Figure 33, battery level and status are presented concerning a sample day of the given data. The blue
line in the plot describes the battery level that decreases over time since the AV is moving and following
a specific route. In the same notions, the orange line represents the battery status. Based on Figure 33 a
battery status equal to zero is assigned to NO_CHARGE status and a battery status equal to 100 refers to
CHARGE status. In particular, in the example figure, it seems that the vehicle was fully charged at the
begging of the day. Then at the end of the route, the vehicle battery status was turned from
NO_CHARGE to CHARGE.
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Figure 33: Daily battery data concerning the level and state of the battery
AV Battery Data
120
Dr’scharging Discharging Dfscharging Discharging
AN b, L
Chargil ‘ Char Chargin Charging
80 -
o
>
O
-
> 60
@
]
©
m
40 -
20
—— Battery Level
—— Battery Status
0 } T - T
2021-10-18 2021-10-19 2021-10-20 2021-10-21

Figure 34: Overview of AV Battery data, illustrating the Battery Status (Charging/ Discharging) and the
Battery Level trends

48



=AVENUE

D5.6 Transport service optimization approach and results

3.2.1 Overview and Limitations

The overview of the HOLO battery data gives that the AV follow a very specific pattern in battery
consumption which is easily visible and recognisable. This fact creates many limitations in the energy
consumption problem formulation. These patterns concern mainly battery discharging trends.
Moreover, there is a specific pattern in the battery state in which the AV is charging at the end of each
day. However, the most important limitation on the daily time window of the data. Battery data is
provided for a certain period of the day which mainly corresponds to almost office working hours.

All these limitations can affect the prediction performance of the energy consumption model. A machine
learning model can overfit in explicit data patterns and not be able to generalise in more cases.

3.3 Problem Formulation

In this section, we describe the formulation of the energy consumption model based on the HOLO AV
battery data.

3.3.1 Cyclic time

To proper formulate the energy consumption model, we initialised cyclic time features for our problem.
When dealing with time series data in the context of machine learning algorithms, it is important to use
encoded properties of time. In the case of the energy consumption model, the time of day is an
important factor in correctly predicting the battery level. For example, 23:59 to 00:00 concerns a
separate day but the model would not consider the time gap as 1 minute apart.

A possible solution to this problem relies on feature engineering which means using cyclic time instead
of conventional. It is more efficient to understand cyclic patterns such as hours, minutes, and seconds of
the day.

As a result, the cyclicity of time could be very helpful in our time series forecasting. Cyclic time uses
periodic functions such as "sine" and "cosine" to encode time data. Figure 35 represents the encoding of
the conventional time to the cyclic time. The cyclic time was used as an extra feature in the energy
consumption forecasting model.
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Cyclic Time Implementation

Hours
12 1
10 A
d
3
£ 87
6 .
0 5000 10000 15000 20000
Hour Samples
Cyclic Hours
1.0 1 o o o
@
ld ®
3
T 0.5 1 @
=
[} ®
0.0 __? T T T T T T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Cosine Hours

Figure 35: Conventional time (hours) to cyclic time (hours) conversion

3.3.2 XGBoost

For the energy consumption forecasting task gradient boosting approach was employed. XGBoost is an

optimized distributed gradient boosting framework which was designed to be efficient, flexible and

portable especially. The stochastic gradient boosting algorithm, also called gradient boosting machines

or tree boosting, is a powerful machine learning technique that performs well on many machine learning

challenges, involving time series forecasting.

Our case refers to time series data modelling, which can be phrased as supervised learning. We give a

sequence of numbers for a time series dataset, so we can restructure the data to understand patterns.
Figure 36 demonstrates the architecture of the XGBoost algorithm that was employed to design the
energy consumption, forecasting model.
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Tree 1

Tree 2
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Tree n
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Figure 36: XGBoost algorithm representation
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Time series forecasting is very sensitive to sequences of data. For this reason, instead of using previous
knowledge of battery data to predict the next steps, we employed cyclic time features. Finally, the input
of the XGBoost algorithm, as demonstrated in Figure 37, involves the battery status, the AV speed, the
AV distance and the cyclic time. The output of the forecasting model is the battery level of the AV.

Input

« Battery Status (Charging/

Discharging) ‘ b Output
« AV speed (m/s) : oos - Battery Level

« AV Distance
« Cyclic Time

Figure 37: AV Battery prediction model formulation

3.4 Energy Consumption Prediction

In this section the results and the evaluation metrics of the energy consumption forecasting are
presented. For the training of the forecasting model, we used 70% of the data and the rest of 30% for
evaluating the performance of the model. Figure 38 presents the forecasting results of the XGBoost
forecasting model. The blue line represents the true battery values and the orange one the predicted
values. It is observable that the XGBoost model almost achieves to follows the exact pattern of the true
battery levels.
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AV Battery Forecasting
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Figure 38: AV Battery forecasting for indicative testing days

For the evaluation of the prediction model we used well-known forecasting performance metrics, as
described in Table 21. These metrics are among Mean absolute error (MAE), Mean squared error (MSE),
Root means squared error (RMSE) and R-squared.

The average of the absolute difference between the dataset's actual and anticipated values is
represented by the Mean Absolute Error. It calculates the dataset's residuals' average. The mean of the
squared difference between the data set's original and forecasted values is known as the mean squared
error. It calculates the residuals' variance. The square root of the Mean Squared Error is called Root
Mean Squared Error. It calculates the residuals' standard deviation.

Table 21: Performance of the XGBoost forecasting model

Forecasting Performance Metrics
MAE 3.4787

MSE 25.6513
RMSE 5.0647
R-squared 0.8447

Based on the overview of the results, optimal predictive maintenance in determining the direction of
future battery consumption trend.
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