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Executive Summary

This deliverable will introdue the contribution of CERTHiIhR B ] p ®n G ¢ NI ya L2 NI & SNIX
of the AVENUE projecThe AVENUE service platform would requare intelligenceable to run
2LI0AYA&lLGA2ya G2 aSyR @OSKAOfSa (2 GKS NARIKG LI I
demand. The main objective of this task is to work on the following aspects assisting mobility
providers:

1. Planning & scheduling of vehicles in the network based on forecasted demands and energy
constraints.

2. Realtime automated dispatching of missions to vehiclssrvicing the network when
demands arise.

3. Intelligent routing of vehicles taking into consideration current and forecasted traffic as well
as weather.

4. Pooling (also known as rigdharing) to combine similar requests into one, maximizing the
capacity of the service while still guaranteeing excellent transit times to travelers.

5. Automatic electrical energy management by evenly spreading the usage of the fleet and
sending to charging stations vehicles when needed.

6. Health monitoring, defect and maintenance management using si&tbe-art machine
learning techniques to predict and anticipate issues by scheduling maintenance. The overall
reliability of the system is improved by ensuring the availability of the right number of
vehicles.

The target is to optimise the use of autonomous vehicles, augment the service quality, and reduce
the operation costs.

I/ 9wel Qa O2 y & WJadhaxiekical ystudWBrE Siydrithrslevelopment for traffic flow

prediction and predictive maintenance tasks, cructal achieving theaforementioned goalsBy

KIgAay3a I o0SGGSNI OASg 2 FytiNRPRSR a0 yiu3sS ik y2 39N 1+ Q
is optimised.

The results of this deliverable will be used by the Fleet Orchestrators to modify their
algorithms and improve the routing optimization.
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1 Introduction

AVENUEims to design and carry out fidtale demonstrations of urban transport automation by
deploying, for the first time worldwide, fleets of Automated minibuses in low to medium demand areas

of 4 European demonstrator cities (Geneva, Lyon, Copenhagen, and Luxembourg) and 2 to 3 replicator
cities. The AVENUE vision for future public transport in urban and suburban areas, is that Automated
vehicles will ensure safe, rapid, economic, sustainable, and personalised transport of passengers.
AVENUE introduces disruptive public transportation paradigms based on demandpeitmor services,

aiming to set up a new model of public transportation, by revisiting the offered public transportation
services, and aiming to suppress prescheduled fixed bus itineraries.

Vehicle services that substantially enhance the passenger experience as well as the overall quality and
value of the service will be introduced, also targeting elderly people, people with disabilities and
@dzft YSNI 60t S dzZASNE® w2l R 0SKI @A2d2NE aSOdz2NAGe 2F (K.
points of the AVENUE project.

At the end of the AVENUE project feggar period the mission is to have demonstrated that Automated
vehicles will become the future solution for public transport. The AVENUE project will demonstrate the
economic, environmental, and social potential of Automated vehicles for both companies and public
commuters while assessing the vehicle road behaviour safety.

1.1 On-demand Mobility

Public transportation is a key element of a region's economic development and the quality of life of its
citizens.

Governments around the world are defining strategies for the development of efficient public transport
based on different criteria of importance to their regions, such as topography, citizens' needs, social and
economic barriers, environmental concerns, and historical development. However, new technologies,
modes of transport and services are appearing, which seem very promising to the support of regional
strategies for the development of public transport.

Ondemand transport is a public transport service that only works when a reservation has been
recorded and will be a relevant solution where the demand for transport is diffuse and regular transport
is inefficient.

Ondemand transport differs from other public transport services in that vehicles do not follow a fixed
route and do not use a predefined timetable. Unlike taxisdemand public transport is usually also not
individual. An operator or an automated system takes care of the booking, planning and organization.

It is recognized that the use and integration of-@é@mand Automated vehicles has the potential to
significantly improve services and provide solutions to many of the problems encountered today in the
development of sustainable and efficient public transport.

1.2 Fully Automated Vehicles

A selfdriving car, referred in the AVENUE projecadailly Automated Vehicl€AV), or as Autonomous
Vehicle, is a vehicle that can sense its environment and moving safely with no human input.

The termsautomated vehiclesand autonomousvehiclesare often used together. The Regulation
2019/2144 of the European Parliament and of the Council of 27 November 2019 ompppaval

* Xk 1
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requirements for motor vehicles defines "automated vehicle" and "fully automated vehicle" based on
their autonomous capacity:

An "automated vehicle" means a motor vehicle designed and constructed to move autonomously for
certain periods of time without continuous driver supervision but in respect of which driver intervention
is still expected or required.

"Fully automated vehicle" means a motor vehicle that has been designed and constructed to move
autonomously without any driver supervision.

In AVENUE we operatBully Automated minibuses for public transporipreviously referred as
Autonomous shuttles, or Autonomous buses), and we refer to them as sivuyptymated minibusesr

the AVENUE minibuses.

In relation to the SAE levels, the AVENUE project will operate SAE Level 4 vehicles.

%w SAE J3016™LEVELS OF DRIVING AUTOMATION

SE SE SE SE
LEVELO 3 LEVEL1 J LEVEL 2 LEVEL 5

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
W':!at does ::e you are not steering “the driver’s seat”
uman in the
driver’s seat : 2
have to do? You must constantly supervise these support features; When the fealuw These automateq driving features
you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving
These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
What do these to providing steering steering not operate pnless all required vehicle pr_}der
features do? warnings and OR brake/ AND brake/ conditions are met all conditions
: momentary acceleration acceleration
assistance support to support to
the driver the driver
*automatic +*1ane centering +lane centering «traffic jam slocal driverless @ *same as
eme{gen(y OR ) chauffeur taxi level 4,
braking ‘ , «pedals/ but feature
Example o +adaptive cruise Wl «adaptive cruise peday can drive
Features | (Rl control control at the steering everywhere

vheel may or
may not be
installed

warning same time
+lane departure
warning

inall
conditions

Tablel: SAE Driving Automation leve{®2020 SAE International)

1.2.1 Automated vehicle operation overview

We distinguish in AVENUE two levels of control of the AV: miavgation and macromavigation. Micro
navigation is fullyintegrated in the vehicle and implements the road behaviour of the vehicle, while
macra-navigation is controlled by the operator running the vehicle and defines the destination and path

of the vehicle, as defined the higher view of the overall fleet management.

For micrenavigation Automated Vehicles combine a variety of sensors to perceive their surroundings,
such as 3D video, LIDAR, sonar, GNSS, odometry and other types of sensors. Control software and
systems, integrated in the vehicle, fusion and interpret the sensor information to identify the current
position of the vehicle, detecting obstacles in the surround environment, and choosing the most

2



=AVENUE

D5.6 Transport service optimization approach and results

appropriate reaction of the vehicle, ranging from stopping to bypassing the obstacle, reducing its speed,
making a turn etc.

For the Macrenavigation, that is the destination to reach, the Automated Vehicle receives the
information from either the irvehicle operator (in the current configuration with a fixed path route), or
from the remotecontrol service via a dedicated 4/5G communication channel, for a-fhestaged
operation. The fleet management system considers all available vehicles in the services area, the
passenger request, the operator policies, the street conditions (closed streets) and send route and stop
information to the vehicle (route to follow and destination to reach).

1.2.2 Automated vehicle capabilities in AVENUE

The Automated vehicles employed in AVENUE fully and automatically manage the above defined, micro
navigation and road behaviour, in an open street environment. The vehicles are automatically capable to
recognise obstacles (and identify some of them), identify moving and stationary objects, and
automatically decide to bypass or wait behind them, based on the defined policies. For example, with
small changes in its route the AVENUE minibus is able to bypass a parked car, while it will slow down and
follow behind a slowly moving car. The AVENUE-ises are able to handle different complex road
situations, like entering and exiting rowadbout in the presence of other fast running cars, stop in zebra
crossings, communicate with infrastructure via V2I interfaces (ex. red light control).

The minibuses used in the AVENUE project technically can achieve speeds of more than 60Km/h.
However, this speed cannot be used in the project demonstrators for several reasons, ranging from
regulatory to safety. Under current regulations the maximum authorised speed is 25 or 30 Km/h
(depending on the site). In the current demonstrators the speed does not exceed 23 Km/h, with an
operational speed of 14 to 18 Km/h. Another, more important reason for limiting the vehicle speed is
safety for passengers and pedestrians. Due to the fact that the current LIDAR has a range of 100m and
the obstacle identification is done for objects no further than 40 meters, and considering that the
OSKAOfS Ydzaad al ¥Ste adz2Ll Ay OFasS 2% +y 2o0adl Ot S
distance) we cannot guarantee a safe braking if the speed is more than 25 Km/h. Note that technically
the vehicle can make harsh break and stop with 40 meters in high speeds(0(40n/h) but then the

break would too harsh putting in risk the vehicle passengers. The project is working in finding an optimal
point between passenger and pedestrian safety.

Due to legal requirements Safety Operatormust always be present in the vehicle, able to take control

any moment. Additionally, at the control room,Supervisoris present controlling the fleet operations.
AnIntervention Teamis present in the deployment area ready to intervene in case of incident to any of
the minibusesTable2 provides an overview of the AVENEU sites and ODDs.
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Summary of AVENUE operating sites demonstrators

TPG Holo Keolis Sales-Lentz
Geneva Copenhagen Oslo Lyon Luxembourg
Site Meyrin Belle-ldée Nordhavn Ormgya ParcOL Pfaffental Contern Esch sur Alzette
Funding TPG EU + TPG EU + Holo EU + Holo EU + Keolis EU + SLA EU + SLA EU + SLA
Start date of project August 2017 May 2018 May 2017 August 2019 May 2017 June 2018 June 2018 February 2022
Start date of trial July 2018 June 2020 September 2020 December 2019 November 2019 September 2018 September 2018 April 2022
Type of route | Fixed circular line Area Fixed circular line Fixed circular line Fixed circular line Fixed circular line Fixed circular line Fixed circular line

Level of on-demand

Fixed route / Fixed

Flexible route / On-

Fixed route / Fixed

Fixed route / Fixed

Fixed route/Fixed

Fixed route / Fixed

Fixed route / Fixed

Fixed route / Fixed

service* stops demand stops stops stops stops stops stops stops
Route length 2,1 km 38 hectares 1,3km 1,6 km 1,3 km 1,2 km 2,3 km 1km
Road environment Open road Semi-private Open road Open road Open road Public road Public road Main pedestrian road
Type of traffic Mixed Mixed Mixed Mixed Mixed Mixed Mixed Pededstr_lans, bicycles,
elivery cars
Speed limit 30 km/h 30 km/h 30 km/h 30 km/h 8 to 10 km/h 30 km/h 50 km/h 20 km/h
Roundabouts Yes Yes No No Yes No No No
Traffic lights No No No No Yes Yes Yes No
Type of service Fixed line On demand Fixed line Fixed line Fixed line Fixed line Fixed line On Demand
Concession Line (circular) Area Line (circular) Line (circular) Line (circular) Line (circular) Line (circular) Line (circular)
Number of stops 4 > 35 6 6 2 4 2 3
Type of bus stop Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed
Bus stop infrastructure Yes Sometimes, mostly not Yes Yes Yes Yes Yes Yes
Number of vehicles 1 3-4 1 2 2 2 1 1
Timetable Fixed On demand Fixed Fixed Fixed Fixed Fixed On-demand
Operation hours Mondaéy—Friday 5 Sunday(;Saturday 7 Mondz;y—Friday Mondaé/—Sunday 7 Monda)gSaturday Tslﬁjg;;’y:&;]hnudfzsag Monday - Friday Monday i Saturday
B By (5 days) ays) Beayg) every public holiday
Timeframe weekdays | ool 0530/ 07:007 19:00 10:007 18:00 7:307 21:30 08:30i 19:30 12:00i 20h00 oI o e
Timeframe weekends No service 07:007 19:00 No service 9:007 18:00 08:301 19:30 10:007 21:00 No Service On Suterday only
Depot 43?5{2(:225 On site 800 meters distance | 200 meters distance On site On site On site 500 m distance
Driverless service No 2021 No No No No No No
Drive area type/ODD . . B-Roads/minor )
B-Roads Minor roads/parking roads B-Roads B-Roads B-Roads B-Roads/parking
Drive area geo/ODD ' Straight ' _ ' _ Straight Lines/ _ ) _ ) Straight lines / plane
lines/plane Straight lines/ plane Straight lines/ plane Curves/slopes plane Straight lines/ plane Straight lines/ plane
Lane specification/ODD Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Traffic lane Open area
Drive area signs/ODD Regulatory Regulatory Regulatory, Warning Regulatory Regulatory Regulatory Regulatory Regulatory
Standard surface, Standard surface, Standard surface Frequent Ice, Snow Standard surface, Standard surface Standard surface Standard Surrface
Drive area surface/ODD Speedbumps Speedbumps Speedbumps, Potholes
Roadworks

Table2: Summary of AVENUE operating site (+ODD components)




1.3 Preamble

Task 5.4 focuses on "Transport service optimisation." Its primary goal is to enhance autonomous vehicle
(AV) service by addressing several key aspects: vehicle planning and scheduling based on forecasted
demands and energy limits, refiine dispatching, intelligent routing considering traffic and weather
forecasts, ridesharing for efficient service, automated energy management, and predictive maintenance
using advanced machine learning. These efforts aim to maximize AV efficiency, enhance service quality,
and cut operational costs. CERTH's role includes theoretical studies and algorithm development for
traffic flow prediction and predictive maintenance. The findings will guide Fleet Orchestrators in refining

routing algorithms.
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2 Traffic Flow prediction

In the last few years, the utilisation of autonomous vehicles (AVs) has been significantly increased over
the globe.AVs have the potential to improve the quality and protkity of the time spent in ca,
increase the safety and efficiency of the transportation system and transform transportation into a
utility available to anyone, anytimeTraffic flow prediction is an important component of the
autonomous driving system and is used to handle traffic congestion prolie@m assisto decide their
itinerary and take adaptive decisions such as turn left or right, move straight, lane change, stop or
accelerate with respect to their surrounding objectis.recent years, new models and frameworks for
predicting traffic flow have been rapidly developed to enhance the performance of traffic flow
prediction, alongside the implementation of Artificial Intelligence (Al) methods such as machine learning
and deep learning.

In the next sections, state of the art approaches in traffic flow prediction tasks are presented. The
problem formulation, the dataset analysis and the methodology usedh®purpose of this task is also
described in detail. The performance of the developed algorithms is estimated and compared in terms of
variousstatistical metrics.

2.1 Literature Review

Traffic flow prediction has a pivotal role to playlimelligent Transport Systems (ITe8)d as a result has
attracted much attention from the research community over the last few decades. Due to the increasing
amount of vehicles and the development of the autonomous vehicles operatiapest from the
problem of shoriterm traffic prediction that researchers have been struggling with, the need forglong
term traffic forecasting has made its appearance and grows rapidly. In light of this, parameters such as
accuracy, efficiency and robustness are essential problems for many ITS applications and as a result
several modelling efforts have been made in the literature in order to solve them, since 1970s. Based on
the forecasting horizon, traffic forecasting can be catésgpal as shorterm forecasting and lonterm
forecasting. Thdirst category refers to a forecast horizon about less or equal than an hour while the
latter to more than one hour.

Concerning the shottime traffic flow prediction, a wide variety of techniques has been applied,
depending upon the type of data that are available and theeptal end use of the forecasfccording

to [1], the approaches used in shadrm traffic forecast can be broadly classified into four categories:
Naive, parametric, noparametric, and hybrid. Thie'st category refers to models that provide simple
estimate of traffic in the future, e.g., historic averages. The parametric approaches refer to the models
that capture all its information about the data within its parameters. In other words, the prediction of a
future data value from the current state of the model depends only on its parameters. On the other
hand, a nomparametric model can capture more subtle aspects of the data. It allows more information
to pass from the current set of data that is attached to the model at the current state, so to be able to
predict any future data. The parameters are usually said to be infinite in dimensions and so can express
the characteristics in the data much better than parametric models. As a result, this allows the model to
have more degrees of freedom, be more flexible and in cases of multivariate seimgder[2]. Lastly,

other shortterm traffic models have implemented a hybrid of the abawentioned approachedn [1]
numerous short traffic prediction models and states were applied avdag proved that there is no
GoSaild S OKiededirarGoikdn retefitdgdals has focused on combining different state of the
art techniques (parametric and ngrarametric)[3] [4]. Research has shown that the prediction accuracy
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of nonparametric methods and hybrid methods is superior to parametric methods. Admittedly, the
traffic flow prediction problem is challenging mainly due to the complex spatial and temporal
dependencieg5]. While the traffic time series demonstrate strong temporal dynamics (accidents, rush
hours, weekdays and weekends traffic differences), at the same time sensors on the road contains
spatial correlations. To sum up, another division to the traffic prediction techniques that has been made
is based on whether they model the spatial correlation among different traffic time series @@]not

Traffic Forecasting without Modeling Spatial Dependency

In more detail, the parametric models that have been proposed for traffic flow prediction are based on
time series analysis. A time series is described as the set of observed data x, each one being recorded at
a specific time {7]. The goal is to determine a trend from the observed traffic flow data in order to
predict future values. Most of them are based on the classic Box and JenkinRégressive Integrated
Moving Average (ARIMA) model and have seen a satisfactorily successfuatapplto traffic
prediction. ARIMA consists of three parts: The autoregression (AR) part which correspond to the
dependent relationship between an observation and some number of historical observations, the
Moving Average (MA) part which is used to model the dependency between an observation and residual
errors from a moving average model ajgpol to historical observationand Intergraded (l) partwhich is

used in order to make the time series stationary, using differencing of raw observations. Mohammed,
first used ARIMA model to predict shaerm freeway traffic flow in 1979. At the same year, Ahmed
used ARIMA model to predict shadrm traffic [8]. It has been shown that the proposed model ARIMA

(0, 1, 3) produce more accurate results contrary to moving average and dexgpimential smoothing
methods in terms of MAE and MSE. Other tigggies models include techniques such as nonlinear
regression, averaging algorithm, seasonal ARIMA (SARIMA). Esped®llythanapplication of seasonal

time series models to traffic flow forecasting is addressed forfitst time, and SARIMAnd Winters
exponential smoothing models were developed and demonstrate the necessity of of$agasonal

time series. Another popular time series forecasting model is exponential smodtOhfL1], which in

recent years has been used mostly in combination with other techniques so as for the results to be even
more accurate.

Another parametric technique, which still remains very popular among-terees models, is Kalman
filtering (KF). Okutani and Stephanedes introdu¢dgtheory into this field andthe derivedresults
indicated improved performancd8]. In addition, theKFhas been studied by many authors considering

a first order traffic model, as ifil2], and in[7], in order to solve the problem of significant data
requirements in timeseries models, especially in cases that the sufficient flow data is unavailable. They
are generally applied both to the stationary and the rgiationary stochastic environment and its major
advantage is that it allows the selected state variable to be updated continuously. In other \Wérds,
updates the prediction of state variables based on the observation in the previous step. As a result, it is
only needed the storage of the previous estimated information, which makes the algorithm more
compuationally efficient than utilisyg all the previous estimated data in each step of the prediction
process13]. Moreover, it can export useful information from data observations that could be noisy or
inaccurate. Hence, they estimate a process by estimating the process state at a given time and then
obtaining feedback in the form of noisy measurements. BasetherKFtheory, there have also been
some modificationg14] and hybrid modelq15]. Unfortunately, despite thefrequently good traffic
prediction accuracy KF method yields, traffic conditions are mostly unstable and this can lead to
generate ovetprediction or undetprediction results.
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On contrary, Historical Average (HA) modadslressthe traffic flow as a seasonal process and tise
weighted average of previous seasons as the prediction. For instance, let the season be 1 week, then the
prediction for this Monday is the averaged traffic speeds frti@ last six Mondays. As the historical
average method does not depend on shitm data, its performance is invariant to the small increases

in the forecasting horizon. Thus, its ability to respond to unanticipated events and incidents is low.
Despite that, it is easy for implementation and it is a fast working model.

As already discussed, these models usually rely on the staiipresumption andequire high quality

of data set so as for them to be accurate and fail to capturelm@ar temporal dynamics of traffic flow

[16]. Generally, parametric techniques are useful when the pattern of the observed data has a regular
variation, which in this case is either sparse or even impossible as the traffic data is usually stochastic
and unstable. Subsequentigue to the fact that tharaffic flow is uncertain, nonlinear and complex, it is
difficult to predict the traffic flow effectively and accurately by the preidictmethod based on
traditional mathematics and physics moddlE)]. Nevertheless, some of these models still remain
popular. Compared to this, ngoarametric algorithms consist of flexible number of parametetsle

the dataare not assumed to follow arparticulardistribution. Therefore, it turns out that these models
appearto be more suitable to illustrate traffic information. As for the accuracy, due to the ilegrn
ability and strong generalision, nonparametric techniques are able to archive better performance. In
summary the mainly advantages of ngrarametric algorithms include intuitive formulation, totally
datadriven and thus free of assumptions on data distribution, high flexibility and easy extend#jility

All these reasons, in combination with the advent and rapid growtrtficial Intelligence (Alhave led

in the last few years to the statistical traffic prediction methods displacenenthe 3 Japproach.
Specifically, a variety dflachine LearningML) algorithms have been used since 1990 to model traffic
patterns, such adleural Networks (NN), K S+ NS A G Yy SA 3K o-RNyNEH QuppieB\RNgE 4 4 A 2 Y
Regression (SVRR)7], Long &ort-term Memory networks (LSTMJ.8], andGated Recurrent klts (GRUY

[19].

As a typical nhonparametric method, thkeNN model has received considerable attention. Many scholars
have successfully applied the traditiodkaNN model to short term traffic prediction and along with SVR,
turns out to be the most common methsdised by researchers for traffic flow forecasting. Tiseof k-

NN method in time series forecasting was suggestedthierfirst time in 1987, by Yakowj20] and in

1991 Davis and Nihg21] used the kNN approach in traffic forecasting, which performed comparably

to, but not better than, the linear timeeries approach. Since then, a lot of resedrabbeenconducted
regarding kNN approaches in traffic flow forecasting and in combination with ube of larger data
bases have led to the amelioration obkb Q& I OOdzNJ} Oeé® Ly 2NRSNJ (2 F2NB
[22], the kNN nonparametric regressiomas been appliecand indicatedthat forecasting intervals
calculated by kas an obvious improvement in comparison WNINs performance, in unconventional

road condition forecasting. According [83], nonparametric regression aims at finding past events that
had input values identical to the current state of the system, namely at the moment that prediction is
performed The k-NN method is a nofparametric regression methothat searches for the k optimal
nearest neighbour and predicts traffic flow at the next time. In other words, it predicts the traffic flow
y(p) for a given x(p), while using series of observation of input and output pairs ([x(1), y(t)], t=1, 2, 3..., n),
that have been collected from historical data. In ordier this to succeedk-NN method sorts the past

input measurements in the training sample from the additional input measurement according to their
distance from the given x(p). The main advantagehef kNN algorithmis the ability of adding data

* Xk 8
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from multiple locations into the examined area. Notably, nonparametric algorithms are theoretically
grounded. As an asymptotically optimal forecaster, when applied to a state space with m mekabers,
NN approach will asymptotically be at least comparable to @&y order parametric mode[22].
Motivated by this attractive property, there is a steady stream of refining and exteridily in the
literature. Basically,k-NN algorithms are singlstep [21] [22] [23] and that leads to two crucial
problems: firstly, for multiplestep forecastingtiis noticed that the algorithngenerates overlapping
nearest neighbours and secdggits performance is sometimes sensitive due to noisy neighb{2d}
Another disadvantage of the -KIN algorithm is the inability to perform spatial and temporal
dependencies at the same time.

SVRs another remarkable nonparametric method that Hzeen widelyused for traffic flow forecasting.
SVRs an adaptation of the SVM algorithm used for regression problems. The purpose of SVR is to map
given data to a high dimensional feature space followed by performing linear regression with the same
space. Firstly, each item in the dataset is plotted as a point-dgmensional feature space. Then,
classification is performed by locating hyperplane that divides the given input into classes. In literature,
SVR has been successfully used to predict traffic parameters such as hourly flow and traj&l [Bine

In particular in [25] Neto et al. applied a supervised onliB&Rapproach toinvestigatethe accuracy of
traffic flow prediction under both usual as well as unusual traffic conditions. Moreov§s],ikVu et al.
presented the SVR for travBine prediction and compared it with other baseline tradiehe prediction
methods using real highway traffic data. Another spectacular work was proposdd]inin which a

novel prediction model was presented, called online learning weigBég In comparison with several
well-kknown prediction models including artificial neural network models, locally weighted regression,
conventional SVR and online learningSVR it has shownsuperior performance to that of existing
models.

Moreover, Bayesian networks have been proposed as models that could provide information from other
road link in order to help the traffic flow forecasting at the examined link. Bayesian forecasting is a
learning process that sequentially reviews the state of the travel time a priori knowledge based on new
available data. In a few words, it is a directed graphic model for representing conditional dependences
between a set of random variabl¢®6]. As a norparametric model, it is able to handle ndinear and
non-stationary processes. Nevertheless, due to the difficulty of describing the influence of traffic flows
at all the other links to the traffic flow at the examined one, since there would be too many variables to
be determined in order to access this relationship[26], it is assumed the independence of the links

with the examined. As a result, the calculations are simplified and an estimation of the joint probability
distribution among all nodes is now feasible with accurate results, as the network is sizdljersed a
scalarbased data model such as time series, and instead of using classical inference, the Bayesian
Method was applied to estimate the parameters of a SARIMA model. The Markov Chain Monte Carlo
Method was used to solve the posterior problem in high dimension. Within this method, it was
OF £t OdzAf F ISR GKS LIRAGSNA2NI LINPOFOATAGE RAAGNAOdzIA 2
taking into account the relevant evidence related to the particular case under examination. Their study
showed thatthe Baysian inference of SARIMA mogebvides a more rational technique toward short

term traffic flow prediction compared to the commonly applied classical inference. Thus, forecasts from
the Bayesian approach can better model the traffic behavior in reality with rapid fluctuations and
extreme peaks.
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Among the nonparametric techniques used for traffic flow prediction, li¢approaches have been
commonly used for the problerf28] [29] and is one of the most popular approaches as this technique
has resulted in hundreds gublications As a matter of fact, mathematical theorems have proved that a
three-layer feedforward NN, with sigmoidal units in the hidden layer, can approximate a given real
valued, continuous mukhvariate function to any desired degree of accurf®] [31]. It was roted that

for traffic prediction purposesartificial neural networks ANNg can be understood as nonlinear
regression models, althougthey are typicallyused in this context for clustering, classification, and
feature extraction. ANNs provide functionalities such as-lselfning, seHorganization and pattern
recognition. They can also perform néinear approximation between input and output spaces and their
parallel structuremakesthem capable of implementing on parallel computing. The idea of predicting
traffic flow using ANNs was initially introduced by Hua and Faghri in[B2R4~ollowing that, Smith and
Demetsky designed a NN model which was compared with traditional traffic prediction neegmod
indicatedthat during the peak traffic periods the NN structures succeed better performance than other
traditional ML architecture$36]. At this point, it is noteworthy to mention the research of Led{2&]

that proposesa cooperationbased neural network traffic flow model, which aims at being integrated
into a real time adaptive urban traffic control systehRirstly, a single ANN was used to mbttaffic
patterns on a signaksl link. Then, the information was exchanged between connected local NN to
model traffic flow at a junction. Unfortunately, using NNs model indivigualhy not acquire good
generalisition capability for traffic flow prediction. For this reason, incorporating other intelligent
methods has widely been investigated for better prediction results. Specifically38] a hybrid NN
model is presented, which uses a fuzzy #hdesed system (FRBS) which combines prediction output from
an online KF and NN. The reswfspearto be really optimistic as hybrid prediction responds better for
increasing nosinear, uncertain and highly fluctuating nature of urban traffic fig@4] is one of the
many significant works concerning the traffic flow prediction problem, in which, in contrast to some
previous worksa dynamic NN architectur&as used In addition, due to the objeatriented approach,

it was possible to model complex networks with a mixture of learning rules and processing element
interactions. On the other hand, Jiang et[8b] developed a dynamic wavel&N model for traffic flow
forecasting for capturing the dynamics of the traffic flow and for pattern recognition with enhanced
feature detection capability.

lf 0K2dAK y2yLINFYSGNAO Y2RStaQ NBINBaairzy TFT2NBO
comparison with parametric techniques, this is mostly observable for the cases where interactions
between travellers and infrastructure are relatively constant. That is because S\R\&hodels are
founded on chaotic system theory. Chaotic systems are defined by state transitions that are
deterministic and nodinear. As for ANNSs, despite their advantages, such as their capability to work with
multi-dimensional data, implaentation flexibility, generalation ability, and strong forecasting power
[36], they have inherent deficienciess well. For example, determining the architecture of network is a
difficult issue. Also, weight adjustment using gradient desdxasied error propagation algorithm often
converges slowly. In that way, another nparametric approach, deep learning (DL), has been found to
be useful for traffic flow prediction having multidimensional characteristics. DL is a form of machine
learning that can be viewed as a nested hierarchical model which includes traditional neural networks
and compared to other ML techniques, can provide enhanced performance for predicting traffic flow. In
other words, by exploiting the dependencies in the hiliimensional set of variables, the capture of
sharp discontinuities in traffitow that emergesn largescale networkdecomes possible.

e n 10
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At this point, it is worth mentioning the applicability oécurrent neural networksRNMN), a type of

neural network with seltonnection, which is able to perform nonlinear awtgression, and its variants

for traffic flow prediction. Due to the dynamic nature of transportation systefR&INshad been
proposed a dozen years ago to forecast traffic flow conditi@®$. In[38], EIman gives prominence to
GKS oAftAGASE 2F wbbaQ (2 FSthenibreibigcleady plaingtiod G A 2 G S
the RNN manages to represent these spatiotemporal patterns in a very efficient distributed manner
through its weights. The essencetbf currentanalysis is that the neural network learns to interpret
current inputs in the context of its previous internal stat@fie State Space Neural Network (SSNN) is
considered as a variant of EIman NN, and has been applied to predict urban travéBTf&9] [40].
Different from the Elman NN, the Tinigelay Neural Network (TDNN) feeds back the previous input
values into the current input values, and thus can be considered as a nonlinear multivariate AR model
[41]. In a previous work4?2], it was identified that TDNN could achieve a higher travel time prediction
accuracy compared with the SSNN. Nevertheless, traditional RNN fails for traffic prediction not only
because this process requires both tempesphtial interactions in the network but also due to the
problem of vanishing gradient and exploding gradient. Moreover, traditional RNNs rely on the
predetermined time lags to learn the temporal sequence processing, but it is difficult to find the optimal
time window size in an automatic wg43]. To handle these issues, variants of RNN, such as LSTM and
GRU, are widely used in predicting shimtm traffic flow in the network. Depending on RNNs, several
hybrid models were proposed.

LSTMs are designed to handle léegn dependencies. This feature is advantageous for traffic flow
prediction, because of lack of previous knowledge on correspondence between the length of input past
data and prediction results. LSTMs have the capability to acquire features with-dnt@ngpan for time

series data. Ma et al highlighted the utility of LSTM NNs in traffic flow prediction methods as recently as
in 2015[43]. In this work, they indicate that LSTM NN can overcome the issue ofobaghgated error

decay through memory blocks, and thus exhibits the superior capability for time series prediction with
long temporal dependency. Additionally, the comparison with different topologies of dynamic neural
networks as well as other prevailing parametric and nonparametric algorithms implies that LSTM NN can
achieve the best prediction performance in terms of both accuracy and stability. Subsequently, at the
same year, LSTM RNN was proposed in order to overcome the issue of static and predefined input data
that the already existed models requirg¢dd]. Their model utilizes the three multiplicative units in the
memory block to determine the optimal time lags dynamically and achieve better performance
regarding the accuracy in comparison with other models such as random walk, support vector machine,
single layer feed forward neural network (FFNN) and stacked autoencoder. Despite the extensive variety
of LSTMbased models, GRU models were widely applied in traffic prediction problem, as well. It was Fu
et al.[19] who used GRU models ftve first time, in the area of traffic flow prediction and showed that

they achieve better results than LSTM RNN. Another typical example is the work of [4%} 0], in

which they build a model based on LSTM and their experiaieasultsthat indicate the performances

of models with GRU and LSTM are similar, and both of them better than the basic RNN. Alternatively,
Huang, Bohan et aJ46] used the bidirectional RNIEBRNN) traffic prediction modé&b improve traffic
forecasts and to have a better effect in comparison to the LSTM and GRU models. Their model achieved
smaller MAE and RMSE and higher accuracy than LSTM or GRU model.

Traffic Forecasting with Modeling Spatial Dependency

e n 11
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Unfortunately, most of these Mhased methods are unable to capture in deep the correlation among
different traffic conditions or other relevant traffic information. A representative charastéidn of

those spatiatemporal features is the key to successful traffic forecasting. Over the past few years, one
of the most efficient deep neural networks to model the spatial dependencies is the convolutional
neural network (CNN}7], as it uses filters to find relationships betweegighbouringnputs, which can
make it easier for the network to converge on the correctusoh. For longterm characteriation,
LSTMs seem to be the most suitable algorithm to be used, as they are able to learn botteshanhd
longterm memory by enforcing constant error flow through the designed cell §&8g In particular, to
capture the spatial dependency of the traffic, recent studjé48] [50] [51], propose to model the
transportation network as an image and BBENNto extract spatial featurewhile the historical data is
viewed as an image. To take full advantage of spatial features, some researché&@sIN&e capture
adjacent relations among the traffic network, along with employing recurrent neural network (RNN) on
time axis. Ir[51], a CNNbased methods proposed that learns traffic as images and predicts langde,
network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to
images describing the time and space relations of traffic flow through adimensional timespace
matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction
and networkwide traffic speed prediction. The performance of the proposed method is finally
compared with other naive algorithms namely ordinary least squakdsN, ANN random forest,
stacked autoencodelRNN and LSTMnetworks. The results indicated an average of 42.91% accuracy
improvementwithin an acceptable execution time.

[52] investigated a spatiotemporal Bayesian Network predictor. This approach incorporated all the
spatial and temporal information available in a transportation network to carry out traffic flow
forecasting. In a transportation network, there are usually many road segments related to or providing
information about the traffic flow of the road segment under investigation. However, using all the
related segments as input variables (nodes) would involve much irrelevance and redundancy, as well as
being prohibitive computationally. To solve this problem, authors[%#] adopted the Pearson
Correlation Coefficient to rank the input variables (traffic flows) for prediction, and theflvssstrategy

was employed to select only a subset as hodes of a Bayesian network.

In overall, the most popular solution is a combination of CNN and LSTH#R]MWu et al. based on the
assets of LSTMs and CNNs networks, and with consideration of the -tpawedral characteristics of

traffic flow, proposed a novel sheterm traffic flow prediction method based on the combination of
CNN and LSTM (CLTFP). Tdiewelopeda shortterm traffic flow prediction method based on the
combination of CNNs and LSTMs on an arterial road. In meiesl,da onedimension CNN was used to
illustrate spatial featuresf the traffic flow and two LSTM#or its short-term variability and periodicities.

Given those meaningful features, the featdevel fusion is performed to achieve shaetrm traffic flow
forecasting. The proposed CLTFP was compared with other popular forecasting methods and the
experimental results showed that the CLTFP has considerable advantages in traffic flow forecasting.
Although this method could extract spatiotemporal correlations on a single arterial ibdailed to
consider ramps, interchanges, and intersections, which are significant components of any transportation
network [12]. Thus, it ignores the effect of congestion in terms of spgii@pagation. For instance, a
traffic incident that occurs on one link may influence the traffic conditions usifée regions. In aler to

solve these drawback$53] proposesa novel NN sticture that combinesdeep 2D CNNs and deep
LSTMs to obtain the spatiotemporal correlations among all links in a traffic network. Specifically, they
manage the traffic network as a visual process, where every frame represents a traffic state and several

e n 12
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future frameworks can efficientlyuse imageprocessing algorithms. The numerical experiments
demonstrate that the proposed model outperformed algorithms such as LSTMs, DCNNs, SAEs and SVM
method, in terms of accuracy and stability.

Summarifg, these early works had one common drawback, all of them had ignored the topology
relations among the sensors, regardless they tried to model the spatial correlation, as the spatial
structure is in the Euclidean space (e.g., 2D images). For instance, two roads in different directions of a
highway, though close in Euclidean distance, can have significantly different traffic pattern because of
the network topology. Defferrard et a)54] studied graph convolution, but only for undirected graphs.

In order to solve these problems, Li et [&l]}, model the traffic flow as a diffusion process on a directed
graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning
framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic
flow. In particular, DCRNN captures the spatial dependency using bidirectional random walks on the
graph and the temporal dependency using the encediecoder architecture with scheduled sampling.
Later, in[55], the authors speed up this model by replacing RNN with CNN to model the temporal
dependency.

Conclusions

Overall, it is quite simpleminded to claim that one method is clearly superior over other methods in any
situation. One reason for this is that the proposed models that have been discussed above are
developed with a small amount of separate specific traffic data, and the accuracy of traffic flow
prediction methods is dependent on the traffic flow features embedded in the collected spatiotemporal
traffic data[56]. In addition, traffic flow is influenced by mafactors like weather, the day of the week,
random events, road construction, lighting conditions, etc. Consequently, integration of external
environmental factors is also crucial to decrease the error of prediction. Traffic flows arknean

mostly nonstationary processes influenced by many factosis described earlier, whilé also has
significant spatidemporal properties[57]. In general, literature shows promising results when using
NNs, which have good prediction power and robustness. Although the deep architecture of NNs can
learn more powerful models than shallow networks, existing-bdided methods for traffic flow
prediction usually only have one hidden layer. It is hard to train a d@ggred hierarchical NN with a
gradientbased training algorithm.

By and large, the most suitable prediction model strongly depends on the basic points that the work
focuses, namely, in a microscopic view, the examination of the traffic flow at a specific point in space, or,
in a macroscopic view, the correlations determination of the road segments. Considering the existed
literature, it seems that the most promising models benefit from the spedinporal property of traffic

flows, such as timgspace matrix models or regidrased models. Nevertheless, there is a need for a
model that also works when the particles of the flow do not move in the same direction as vehicles.
Another conclusion that could extracted from the literature is that the most noticeable models are the
non-parametric ones, because they are able to handle-loear, stationary or nosstationary, dynamic
processes, and they can also exploit the sptgimporal relationship of traffic flows. Nowadays, the
most frequently uncounted modelare variable neural networks such as LSTMs, CNN, or a combination
of both.

e n 13
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2.2 Overview/Solution Description

The major goal of thisvork is implementing a theoretical approach on how an effective and accurate
method that will predict reatime traffic flow could be implemented. This coddS ONMXzOA | f T2 NJ
optimised route choice. In more detail, as the vehicle is moviagthe route selectionthe next few
YAYydzi $SaQ GNI FFAO T @ddbe cohsldededrStlis wiayk & overSieniof theaaaN A
condition is outlined and the possibility of getting the vehicle stuck in traffic jam will be decreased.
Eventually, for this purpose, several machine and dieepning models will be investigated, so at the

end, the one with the most accurate, effective and fast performance will be chosen.

Generally, traffic flow prediction is an important component of traffic modeling, operation, and
management.
Traffic flow prediction has a pivotal role to play in intelligent transport systems due to:

1 The continuousncreasing amount of vehicles

1 ¢KS RS@St2LISyd 2F GKS Fdzizy2Y2dza OSKAOf SaqQ 2

By and large, traffic flow prediction is important for:
1 Traffic Management
1 Risk Assessment
1 Public Safety

In our problem, accurate redime traffic flowprediction can:
91 provide information and guidance for treutonomous vehicles, to optimasthe travel decisions
in order to avoid traffic jam and reduce cost
1 provide users the fastest route to their destination
1 provide information to passengers about the traffic state on roads for the next few minutes, or
even one hour later

Parameters must be examined:

1 Traffic Flow at specific segments of the road (Vehicles / minutes of sample)
Traffic Speed at specific segments of the road (Speed / minutes of sample)
Weather Conditions
The day of the week (weekdays vs. weekends)

Lighting Conditions
Accidents
Road construction

=A =4 =4 4 -4 4

Solution of the examined problem

As discussed, several possible models are proposed in literatufgigume 1, the most fundamental
techniques have been concentrated for an enhanced understanding.

No method is clearly superior over other methods in aityation
That is because:
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T [KS NI T fnluenced by factorSuth as thaveather, the day ofhe week,
randomevents, road construction, lighting conditions

1 It also has significarsipatiotemporal properties
1 The amount of data consists also a crucial parameter for the model choice

Literatureshows promising results when using NNs, which have good predptiear and robustness
1 The most suitable prediction model strongly depends on the basic points that the work focuses:
9 In a microscopic view, the examination of the traffic flow at a specific point in space
1 In a macroscopic view, the correlations determination of the road segment

Time Series

Parametric
Technigues
Kalman Filtering
— CNN
Traffic Flow Prediction Models — ANN
— Bayesian Methods
— MLP
b= k-NN Algorithm
Support Vector
Non-Parametric Regression —  Supervised — e
Technigues
= RNN GRU
TDNN
— Deep Learning ™

= Unsupervised s Autoencoder

Figurel: Traffic Flow Methods found in Literature

More noticeable models are th@on-parametric ones especially when there iRege amount of training
data (they can handle notinear, stationary onon-stationary, dynamic processes)

1 For exploiting the spatitemporalrelationship of traffic flows, the most frequently uncounted
models are variable neural networks such as LSTMs, CNN, or a combination of both
1 Consequently, is it important to use several models, compare the prediction results with the

ones produced by baseline models and conclude, via evaluating the results, to an optimum
solution

2.3 Current Status and Progress
Initial investigation regarding the most suitable feature extraction methods and algorithms used.

1 As there was no provided traffic flow data for the four cities the project is developed, namely
Lyon, Copenhagenieneva and Luxembourg, wieitially utilised two open datasets and
extracted another one from an open platform from California State, Caltrans Performance
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Measurement System (PeMR) orderto propose a methodology approadhbr the traffic flow
prediction task

1 The examined sensors wetecated atspecific points of the road, counting the number of
vehicled 5min duration passing and the average speed

Three approaches were considered:

1 Manual feature extraction from PeMS platformyitable preprocessing and uséition of
baseline time serietechniques as ARIMA and VAR models for training and prediction.

1 Manual feature extraction from PeMS platform, training and prediction using Deep Learning
algorithms, namely LSTM, GRU, CNN.

¢ 1 O2Y06AylLdA2y 2F |+ D/b YR Dw! Y2RSfX Ay 2NR
temporal dependences. The elementary idea is to use the historical n time series data as input
and the graph convolution network in order to illustrate topological structure of urban road
network to obtain the spatial feature. At a second time, the obtained time series with spatial
features are input into the GRU model and the dynamic change is achieved by information
transmission between the units, while maring the temporal features.At the end the
prediction is performed as the two models are suitable connected in a layer.

Finally, we compared the manual extracted data from PeMS platform with two already existed datasets,
SZtaxi dataset and Lelwop dataset, so as to have a more accurate evaluation of our models.

After the implementation of traffiflow prediction models on public data, an overview of various
FfI2NAGKYAQ LISNF2NXIFyOS 2y &adzOK ({AyR 2F GFaila oI
implementation on the current task, traffic flow data from the pilot sites that the AV operated were
ySOSaalNEd® bSOSNIKSE Saazx GKS RFEGlF 02ttt SOGSR FTNRY
speed of the particular AV at a specific timestamp. The average traffic speed of the road extracted from

all the passing vehicles was not possible to be collected with the existing equipment. Magnetic sensors,
infrared sensors, photoelectric sensors, Doppler and radar sensors, inductive loops and video camera
systems that are installed on, in and above the roadway constitute such systems that can provide the
required information[41]. As a result, there was no a realistic insight of the traffic state of the road from

the available data.

An alternative approach was applied in orderiigplement a solution that meets the T5.4 requirements.
In particular:

1 Realworld data was collected from the pilot sites that the AV operated via TomTom API

1 Weather historical data from the corresponding regions were also collected from the Visual
Crossing API

9 Different machine learning and deep learning approaches were applied and the one with the
best performance was suggested as the optimum solution to provide an overview of the road
that the AV is operating

2.4 Dataset Overview

KAa LpdBodiMe yRIGKS SGa a ¢Sttt a GKS RIEGLFasSaa N
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2.4.1 Public Dataset

The first dataset we used was extracted from Caltrans Performance Measurement System (PeMS). The
freeway Performance Measurement System (PeMS) collects real time traffic data from sensors and
generates performance measures of vehicle miles traveled, hours traveled, and travel time. This project
is sponsored by the California Department of Transportation (Caltrans) and provides tools and reports
for traffic planners, operators, and engineers.

The traffic data is collected in retine from over 39,000 individual detectors. These sensors span the
freeway system across all major metropolitan areas of the State of California. PeMS is also an Archived
Data User Service (ADUS) that provides over ten years of data for historical analysis. It integrates a wide
variety of information from Caltrans and other local agency systems including:

Traffic Detectors
Incidents

Lane Closures

Toll Tags

Census Traffic Counts
Vehicle Classification
WeightIn-Motion
Roadway Inventory

= =4 =4 4 -4 -4 A 9

We estimate that similar measures could take place for the cities we are interested in (Lyon,
Copenhagen, Geneva and Luxembourg).

The already extracted datasets we used in order to compare the performance of our models and
confirmed that our models work properly and accurately, arédg&Zand Lodoop datasets. These two

sets are related to traffic speed, oontrast with PeMS dataset, thwge decide to use data related to
traffic flow. However, those two different features have the same structure, so they can both be used as
traffic information without loss of generality.

2.4.1.1Loading Data

The PeMS dataset is availablehat . The traffic data is collected in ret@he from
over 39,000 individual detectors which were deployed across the major metropolitan areas of California
state highway system. They were aggregated intoibute interval from 36econd data samples.

1. In our problem, we used a medium scale dataset as we randomly selected 241 sensors among
District 6 of California. We selected two months for examination (01/0471%1/05/19) and
keep only the traffic flow information of weekdays. At the end, the used set was about
3.123.360 traffic flow data. Additionally, from the geographic coordinates of the sensors, the
241*241 adjacency matrix for the GCN model was calculated, by computing the driving distance
among them. Each row represents one sensor and the values in the matrix represent the
connectivity between the roads.

2. SZtaxi. This dataset was the taxi trajectory of Shenzhen from Jan. 1 to Jan. 31, 2015. It was
selected 156 major roads of Luohu District as the study area. The experimental data mainly
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includes two parts. One is a 156*156 adjacency matrix, which describes the spatial relationship
between roads. Each row represents one road and the values in the matrix represent the
connectivity between the roads. Another one is a feature matrix, which describes the speed
changes over time on each road. Each row represents one road; each column is the traffic speed
on the roads in different time periods. This matrix aggregates the traffic speed on each road
every 15 minutes, for every of 156 roads. This dataset could be found at:

3. Losloop. This dataset was collected in the highway of Los Angeles County in real time by loop
detectors. We selected 207 sensors and its traffic speed from Mar.1 to Mar.7, 2012. This matrix
aggregates the traffic speed every 5 minutesr &very of 156 roads. Similgslthe data
concludes an adjacency matrix and a feature matrix. The adjacency matrix is calculated by the
distance between sensors in the traffic networks. Since theldms dataset contained some
missing data, the linear interpolation method was used to fill missing values. This dataset could
be found at:

2.4.1.2Public Dataset Preview

In the PeMS dataset we picked 241 sensors located in Fresno, a town in California $agerelhthe

traffic flow data of the first 8 sensarahich were selected are presented.

In Figure3, we illustrate all the 241 sensors which were used and as it is shown, there might be a
topological correlation between some sensors which could affect the prediction. The illustration was
applied with the helpof OSMnx package. This let dswnload spatial geometries and model, project,
visualize, and analyzere@l2 N R a0 NBSG ySio2N)la& FNRY hLISYy{iNBSis
we can download and calculate the driving distance between specific locations on roads so as to
calculate the adjacency matrix.

Additionally, inFigure4 and Figure5 the SZaxi and Lodoop dataset were plotted, accordingly. Those

two datasets contain speed information, but the problem and the proposed solution remains the same.
They were used in order to compare the results andobede to the optimal solution.
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Figure2: Traffic flow display of first 8 sensors in PeMS dataset vs number of samples
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Figure3: Display of the used sensors in Fresno of California State

19




=’AVENUE

D5.6 Transport service optimizatiapproach and results

Figure4: Plot of the first 8 sensors' speed measurements irT&Xi dataset vs number of samples

Figure5: Plot of the first 8 sensors' speed measurements indLo®p dataset vs number of samples
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